Association between Postmenopausal Osteoporosis and IL-6、TNF-α: A Systematic Review and A Meta-analysis


Cite item

Full Text

Abstract

Background:Postmenopausal osteoporosis (PMOP) greatly increases the risk of bone fracture in postmenopausal women, seriously affects the quality of life of patients, and is an important global public health problem. Persistent chronic systemic inflammation may be involved in the change process of PMOP, and many cytokines, such as TNF-alpha and Interleukin-6, play an important role in the inflammatory response. Therefore, This study takes commonly representative inflammatory factors as indicators to better determine their role in PMOP patients by means of databases from multiple studies for use in Meta-analysis.

Method:Systematic review of studies on the relationship between PMOP and markers of inflammation: interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). Each effect size was expressed with a 95% confidence interval (CI), and I2 quantified the heterogeneity. The final results were aggregated and evaluated using random or fixed effects models.

Results:Twenty-one original studies were identified. There were twenty studies involving IL-6 and eleven involving TNF-α. Overall, The levels of IL-6[MD=23.93, 95%CI (19.65, 28.21)] and TNF-α[MD=2.9, 95%CI (2.37, 3.44)] were increased in PMOP patients compared with postmenopausal women without osteoporosis; The levels of IL-6[MD=42.4, 95%CI (38.62, 46.19)] and TNF-α[MD=0.40, 95%CI (0.36, 0.44)] were significantly higher than those of premenopausal healthy women

Conclusions:The levels of inflammatory cytokines IL-6 and TNF-α were significantly increased in PMOP patients compared with controls, suggesting that persistent chronic inflammatory reaction exists in PMOP patients, which may be an important cause of aggravated osteoporosis in postmenopausal women. Therefore, the level of IL-6 and TNF-α indexes may be of great significance for the early prevention, diagnosis, treatment and prognosis assessment of PMOP.

About the authors

Xudong Huang

, The Second Clinical School of Medicine of Zhejiang Chinese Medical University

Author for correspondence.
Email: info@benthamscience.net

Baihe Ni

, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Qi Li

, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Meichen Liu

, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Minghua Zhao

, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yanqi Zhang

, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaolin Shi

Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University

Email: info@benthamscience.net

Weiguo Wang

, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

References

  1. Qaseem, A.; Forciea, M.A.; McLean, R.M.; Denberg, T.D.; Barry, M.J.; Cooke, M.; Fitterman, N.; Harris, R.P.; Humphrey, L.L.; Kansagara, D.; McLean, R.M.; Mir, T.P.; Schünemann, H.J. Treatment of low bone density or osteoporosis to prevent fractures in men and women: A clinical practice guideline update From the American College of Physicians. Ann. Intern. Med., 2017, 166(11), 818-839. doi: 10.7326/M15-1361 PMID: 28492856
  2. Lupsa, B.C.; Insogna, K. Bone health and osteoporosis. Endocrinol. Metab. Clin. North Am., 2015, 44(3), 517-530. doi: 10.1016/j.ecl.2015.05.002 PMID: 26316240
  3. Li, L.L.; Ni, D.Q. Research progress on the mechanism of estrogen deficiency in the pathogenesis of PMO. J. Tianjin Med. Uni., 2022, 28(05), 560-562.
  4. Somjen, D.; Katzburg, S.; Sharon, O.; Grafi-Cohen, M.; Knoll, E.; Stern, N. The effects of estrogen receptors α‐ and β‐specific agonists and antagonists on cell proliferation and energy metabolism in human bone cell line. J. Cell. Biochem., 2011, 112(2), 625-632. doi: 10.1002/jcb.22959 PMID: 21268084
  5. Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys., 2008, 473(2), 139-146. doi: 10.1016/j.abb.2008.03.018 PMID: 18395508
  6. Kiesel, L.; Kohl, A. Role of the RANK/RANKL pathway in breast cancer. Maturitas, 2016, 86, 10-16. doi: 10.1016/j.maturitas.2016.01.001 PMID: 26921922
  7. Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; Tsuda, E. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab., 2021, 39(1), 19-26. doi: 10.1007/s00774-020-01162-6 PMID: 33079279
  8. Ponzetti, M.; Rucci, N. Updates on osteoimmunology: What’s new on the cross-talk between bone and immune system. Front. Endocrinol., 2019, 10, 236. doi: 10.3389/fendo.2019.00236 PMID: 31057482
  9. Murad, R.; Shezad, Z.; Ahmed, S.; Ashraf, M.; Qadir, M.; Rehman, R. Serum tumour necrosis factor alpha in osteopenic and osteoporotic postmenopausal females: A cross-sectional study in Pakistan. J. Pak. Med. Assoc., 2018, 68(3), 428-431. PMID: 29540879
  10. Hofbauer, L.C.; Lacey, D.L.; Dunstan, C.R.; Spelsberg, T.C.; Riggs, B.L.; Khosla, S. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone, 1999, 25(3), 255-259. doi: 10.1016/S8756-3282(99)00162-3 PMID: 10495128
  11. Roggia, C.; Gao, Y.; Cenci, S. Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl. Acad. Sci., 2001, 98(24), 13960-13965.
  12. Adebanjo, O.A.; Moonga, B.S.; Yamate, T.; Sun, L.; Minkin, C.; Abe, E.; Zaidi, M. Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of osteoclastic bone resorption. J. Cell Biol., 1998, 142(5), 1347-1356. doi: 10.1083/jcb.142.5.1347 PMID: 9732294
  13. Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol., 2010, 25(9), 603-605. doi: 10.1007/s10654-010-9491-z PMID: 20652370
  14. Lv, K.; Liu, C.Y.; Lu, Y.J. Study on the serum levels of E2,IL-6 and IGF-I in patients with post-menopausal osteoporosis (PMO). J. Radioimmunol., 2006, (05), 364-366.
  15. An, H.G.; Zhang, L. Clinical observation of alendronate sodium in treatment of postmenopausal osteoporosis. Zhongguo Fuyou Baojian, 2019, 34(09), 2060-2062.
  16. Wei, H.W.; Hou, S.L.; Gong, Y. Effect of interleukin-6 on the pathogenesis of postmenopausal osteoporosis. J. Guangzhou Uni. Tradit. Chin. Med., 2002, (02), 94-95.
  17. Liu, S.H.; Wang, S.H.; Wen, L.Y. The correlation between serum IL-6, TNF- α, IL-27 and osteoporosis in postmenopausal women. Zhongguo Guzhi Shusong Zazhi, 2023, 29(04), 477-482.
  18. Hong, X.C. Expression analysis of estrogen and related cytokines in postmenopausal osteoporosis patients. Chin. J. Geriatric Care, 2020, 18(03), 83-84.
  19. Hu, Y.M. The correlation of serum total bilirubin content with bone metabolism and micro-inflammatory response in patients with postmenopausal osteoporosis. Hainan Yixueyuan Xuebao, 2018, 24(24), 2145-2148.
  20. Ke, X.Z.; Ge, P.; Shi, F. The correlation of serum adiponectin, leptin, and inflammatory mediators in postmenopausal osteoporosis. Chin. J. Joint Surg., 2012, 6(03), 407-410. Electronic Version.
  21. Zhou, Z.H.; Wang, G.L.; Dong, J.J. Relationship between cytokines of peripheral blood mononuclear cells and pathogenesis of postmenopausal primary osteoporosis. Zhongguo Guzhi Shusong Zazhi, 2002, (03), 12-14.
  22. Gao, Y.; Hu, X.X. Analysis of the changes of the serum levels of inflammatory factors and bone metabolism indexes in postmenopausal women with osteoporosis. Health Research, 2022, 42(01), 41-43.
  23. Zhuang, H.; Shao, M. Changes in bone mineral density and bone metabolism parameters in patients with osteoporosis. Zhongguo Guzhi Shusong Zazhi, 2002, (02), 52-54.
  24. Zhang, J.; Li, X.H. Changes and relationship of sex hormones, cytokines and bone metabolic markers in the patients with postmenopausal osteoporosis. Chin. J. Biochemi. Pharmaceut., 2017, 37(12), 82-83.
  25. Yi, W.L.; Liao, D.Q.; Lin, B.Y. The changes and relationship with sex hormone,cytokine and bone metabolic index in postmenopausal osteoporosis patients. Lab. Med., 2012, 27(04), 296-298.
  26. Weng, Y.R.; Zhu, Y.F. Changes of serum IL-6, N-BGP, BAP, E2, and IGF-1 levels in postmenopausal women with osteoporosis and the significance. Zhongguo Fuyou Baojian, 2017, 32(12), 2672-2674.
  27. Zhang, H.; Chen, G.F.; Wu, J.Z. Significance of serum Leptin, NO, IL-6 BGP and E_2 in postmenopausal osteoporosis. Chin. J. Tradi. Med. Traumatol. Orthoped., 2008, (02), 1-3.
  28. Chen, H.Y.; Wan, T.Z. Clinical study on the relationship between postmenopause osteoporosis and IL-6 serum and estrogen. J. Henan Uni., 2001, (03), 24-25.
  29. Zhou, P.Q.; Shen, L.; Du, J.Y. Relationship between postmenopausal osteoporosis and serum IL-6 and TNF-α levels. Zhongguo Guzhi Shusong Zazhi, 2001, (01), 5-7.
  30. Li, N.X.; Huang, Y.; Tu, Y. Study on relationship between bone mineral density and levels of bone metabolism, immune cytokines and estrogen in postmenopausal women. Chin. J. Immunol., 2017, 33(08), 1201-1204.
  31. Zhao, D.B.; Wang, H.; Ma, Y.L. Correlation between cytokine ligand 3 and the severity of postmenopausal osteoporosis. Zhongguo Guzhi Shusong Zazhi, 2020, 26(12), 1802-1805.
  32. He, Y. Effects of Interleukin-6 Tumor necrosis factor alpha on the pathogenesis of postmenopausal osteoporosis and changes after administration of Risedronate; Anhui Medical University, 2003. Z.
  33. Khosla, S.; Peterson, J.M.; Egan, K.; Jones, J.D.; Riggs, B.L. Circulating cytokine levels in osteoporotic and normal women. J. Clin. Endocrinol. Metab., 1994, 79(3), 707-711. PMID: 8077350
  34. Chen, Y.D.; Huang, C.Y.; Liu, H.Y.; Yao, W.F.; Wu, W.; Lu, Y.L.; Wang, W. Serum CX3CL1/fractalkine concentrations are positively associated with disease severity in postmenopausal osteoporotic patients. Br. J. Biomed. Sci., 2016, 73(3), 121-128. doi: 10.1080/09674845.2016.1209897 PMID: 27476376
  35. Chou, C.W.; Chiang, T.I.; Chang, I.C.; Huang, C.H.; Cheng, Y.W. Expression levels of estrogen receptor α mRNA in peripheral blood cells are an independent biomarker for postmenopausal osteoporosis. BBA Clin., 2016, 5, 124-129. doi: 10.1016/j.bbacli.2016.03.001 PMID: 27051599
  36. Wang, T.; He, C. TNF-α and IL-6: The link between immune and bone system. Curr. Drug Targets, 2020, 21(3), 213-227. doi: 10.2174/18735592MTAwhMzkdy PMID: 31433756
  37. Tural, S.; Alayli, G.; Kara, N.; Tander, B.; Bilgici, A.; Kuru, O. Association between osteoporosis and polymorphisms of the IL-10 and TGF-beta genes in Turkish postmenopausal women. Hum. Immunol., 2013, 74(9), 1179-1183. doi: 10.1016/j.humimm.2013.03.005 PMID: 23583365
  38. Molnár, I.; Bohaty, I.; Somogyiné-Vári, É. IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis. Osteoporos. Int., 2014, 25(2), 783-786. doi: 10.1007/s00198-013-2548-6 PMID: 24337660
  39. Li, C.; Huang, Q.; Yang, R.; Dai, Y.; Zeng, Y.; Tao, L.; Li, X.; Zeng, J.; Wang, Q. Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China. Osteoporos. Int., 2019, 30(5), 1003-1013. doi: 10.1007/s00198-019-04855-5 PMID: 30666372
  40. Cerf-Bensussan, N.; Gaboriau-Routhiau, V. The immune system and the gut microbiota: Friends or foes? Nat. Rev. Immunol., 2010, 10(10), 735-744. doi: 10.1038/nri2850 PMID: 20865020
  41. Jafarnejad, S.; Djafarian, K.; Fazeli, M.R.; Yekaninejad, M.S.; Rostamian, A.; Keshavarz, S.A. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: A randomized, double-blind, controlled trial. J. Am. Coll. Nutr., 2017, 36(7), 497-506. doi: 10.1080/07315724.2017.1318724 PMID: 28628374
  42. Bron, P.A.; Kleerebezem, M.; Brummer, R.J.; Cani, P.D.; Mercenier, A.; MacDonald, T.T.; Garcia-Ródenas, C.L.; Wells, J.M. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr., 2017, 117(1), 93-107. doi: 10.1017/S0007114516004037 PMID: 28102115

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers