The Mechanism of Action and Experimental Verification of Narenmandula in the Treatment of Postmenopausal Osteoporosis
- Authors: Xiao J.1, Yu Z.1, Han Q.1, Guo Y.1, Ye J.1, Lian H.2, Wang L.1, Ma Y.1, Liu M.1
-
Affiliations:
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
- , Inner Mongolia Medical University
- Issue: Vol 27, No 15 (2024)
- Pages: 2249-2259
- Section: Chemistry
- URL: https://vietnamjournal.ru/1386-2073/article/view/644237
- DOI: https://doi.org/10.2174/0113862073264965231116105323
- ID: 644237
Cite item
Full Text
Abstract
Background::Narenmandula is a classic ancient remedy in Inner Mongolia, historically used for gastrointestinal diseases. In recent decades, Inner Mongolia Medical University found that it has a significant effect in promoting fracture healing and increasing bone density, and has been used to treat postmenopausal osteoporosis (PMOP), but its mechanism is unclear.
Objective::Identify the mechanism of action of Narenmandula for PMOP treatment.
Methods::Network pharmacology, molecular docking and ovarian departing rat models were used to verify the relevant mechanism of Narenmandula in the treatment of PMOP.
Results::We confirmed that NRMDL prescription can improve OVX-induced bone loss, improve trabecular density, and relieve osteoporosis. Upon screening of network pharmacology, we obtained 238 overlapping genes of Narenmandula and PMOP, and analyzed AKT, IL1B, and IL6 as key genes by network topology. Among the 1143 target genes that interact with PMOP, 107 NRMDL active compounds correspond to 345 target genes and 238 overlapping genes. Network topology analysis showed the top 8 active ingredients, such as quercetin and kaempferol, and the top 20 key genes, such as AKT, IL1B, IL6, INS, JUN, STAT3, TNF, TP53, etc. Enrichment analysis revealed involvement of PI3K-Akt, HIF-1, FoxO, MAPK, and TNF signaling pathways. In addition, we found the most important active compounds bind tightly to core proteins, which were verified by molecular docking analysis. The AKT-related pathway had good binding energy, and the pathway was verified by cell and animal experiments.
Conclusion::The potential mechanism and efficacy of Narenmandula against PMOP may be related to the PI3K-AKT pathway.
About the authors
Jirimutu Xiao
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Ziceng Yu
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Qiuge Han
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Yang Guo
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Jiapeng Ye
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Hua Lian
, Inner Mongolia Medical University
Email: info@benthamscience.net
Lining Wang
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Yong Ma
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Mengmin Liu
Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- The North American Menopause Society. anagement of osteoporosis in postmenopausal women: The 2021 position statement of The North American Menopause Society. Menopause, 2021, 28(9), 973-997. doi: 10.1097/GME.0000000000001831 PMID: 34448749
- Arceo-Mendoza, R.M.; Camacho, P.M. Postmenopausal osteoporosis. Endocrinol. Metab. Clin. North Am., 2021, 50(2), 167-178. doi: 10.1016/j.ecl.2021.03.009 PMID: 34023036
- Brown, J.P. Long-term treatment of postmenopausal osteoporosis. Endocrinol. Metab., 2021, 36(3), 544-552. doi: 10.3803/EnM.2021.301 PMID: 34154042
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; Pessah-Pollack, R.; McClung, M.; Wimalawansa, S.J.; Watts, N.B. American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr. Pract., 2020, 26(Suppl. 1), 1-46. doi: 10.4158/GL-2020-0524SUPPL PMID: 32427503
- Ensrud, K.E.; Crandall, C.J. Bisphosphonates for postmenopausal osteoporosis. JAMA, 2019, 322(20), 2017-2018. doi: 10.1001/jama.2019.15781 PMID: 31621799
- Kaban, I.; Kaban, A.; Tunca, A.F.; Aka, N.; Kavak, H.; Akar, F. Effect of pomegranate extract on vagina, skeleton, metabolic and endocrine profiles in an ovariectomized rat model. J. Obstet. Gynaecol. Res., 2018, 44(6), 1087-1091. doi: 10.1111/jog.13642 PMID: 29603520
- Bachagol, D.; Joseph, G.S.; Ellur, G.; Patel, K.; Aruna, P.; Mittal, M.; China, S.P.; Singh, R.P.; Sharan, K. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: A study with pomegranate seed oil. J. Nutr. Biochem., 2018, 52, 18-26. doi: 10.1016/j.jnutbio.2017.09.023 PMID: 29121593
- Huang, Q.; Gao, B.; Wang, L.; Zhang, H.Y.; Li, X.J.; Shi, J.; Wang, Z.; Zhang, J.K.; Yang, L.; Luo, Z.J.; Liu, J.; Ophiopogonin, D. A new herbal agent against osteoporosis. Bone, 2015, 74, 18-28. doi: 10.1016/j.bone.2015.01.002 PMID: 25582622
- Peng, X.; He, J.; Zhao, J.; Wu, Y.; Shi, X.; Du, L.; Nong, M.; Zong, S.; Zeng, G. Polygonatum sibiricum polysaccharide promotes osteoblastic differentiation through the ERK/GSK-3 β/β -catenin signaling pathway in vitro. Rejuvenation Res., 2018, 21(1), 44-52. doi: 10.1089/rej.2017.1956 PMID: 28629266
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111. doi: 10.1038/nbt1007-1110 PMID: 17921993
- Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11. doi: 10.1016/S1875-5364(21)60001-8 PMID: 33516447
- Wang, Y; Yang, H; Chen, L; Jafari, M; Tang, J Network-based modeling of herb combinations in traditional Chinese medicine. Brief Bioinform., 2021, Sep 2; 22(5), bbab106. doi: 10.1093/bib/bbab106 PMID: 33834186 PMCID: PMC8425426
- Gamsjaeger, S.; Fratzl, P.; Paschalis, E.P. Interplay between mineral crystallinity and mineral accumulation in health and postmenopausal osteoporosis. Acta Biomater., 2021, 124, 374-381. doi: 10.1016/j.actbio.2021.02.011 PMID: 33582361
- Kim, T.H.; Kang, J.W. Research status quo in traditional mongolian medicine: A bibliometric analysis on research documents in the web of science database. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-7. doi: 10.1155/2021/5088129 PMID: 34992666
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
- Chen, R.B.; Yang, Y.D.; Sun, K.; Liu, S.; Guo, W.; Zhang, J.X.; Li, Y. Potential mechanism of Ziyin Tongluo Formula in the treatment of postmenopausal osteoporosis: based on network pharmacology and ovariectomized rat model. Chin. Med., 2021, 16(1), 88. doi: 10.1186/s13020-021-00503-5 PMID: 34530875
- Yi, H.; Peng, H.; Wu, X.; Xu, X.; Kuang, T.; Zhang, J.; Du, L.; Fan, G. The therapeutic effects and mechanisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid. Med. Cell. Longev., 2021, 2021, 1-16. doi: 10.1155/2021/6678662 PMID: 34257817
- Yin, M.; Liu, Y.; Chen, Y. Iron metabolism: An emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic. Res., 2021, 55(3), 296-303. doi: 10.1080/10715762.2021.1898604 PMID: 33818251
- Wang, D.; Sun-Waterhouse, D.; Li, F.; Xin, L.; Li, D. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy. Crit. Rev. Food Sci. Nutr., 2019, 59(14), 2189-2201. doi: 10.1080/10408398.2018.1441123 PMID: 29446655
- Wang, N.; Wang, L.; Yang, J. Ursolic acid alleviates chronic prostatitis via regulating NLRP3 inflammasome-mediated Caspase-1/GSDMD pyroptosis pathway. Phytother. Res., 2021.
- Xie, B.; Zeng, Z.; Liao, S.; Zhou, C.; Wu, L.; Xu, D. Kaempferol ameliorates the inhibitory activity of dexamethasone in the osteogenesis of MC3T3-E1 cells by JNK and p38-MAPK pathways. Front. Pharmacol., 2021, 12, 739326. doi: 10.3389/fphar.2021.739326 PMID: 34675808
- Wang, T.; Li, S.; Yi, C.; Wang, X.; Han, X. Protective role of β-sitosterol in glucocorticoid-induced osteoporosis in rats via the RANKL/OPG Pathway. Altern. Ther. Health Med., 2022, 28(7), 18-25. PMID: 35648689
- Fan, S.; Gao, X.; Chen, P.; Li, X. Myricetin ameliorates glucocorticoid-induced osteoporosis through the ERK signaling pathway. Life Sci., 2018, 207, 205-211. doi: 10.1016/j.lfs.2018.06.006 PMID: 29883721
- Mukherjee, A.; Rotwein, P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol. Cell. Biol., 2012, 32(2), 490-500. doi: 10.1128/MCB.06361-11 PMID: 22064480
- Kawamura, N.; Kugimiya, F.; Oshima, Y.; Ohba, S.; Ikeda, T.; Saito, T.; Shinoda, Y.; Kawasaki, Y.; Ogata, N.; Hoshi, K.; Akiyama, T.; Chen, W.S.; Hay, N.; Tobe, K.; Kadowaki, T.; Azuma, Y.; Tanaka, S.; Nakamura, K.; Chung, U.; Kawaguchi, H. Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS One, 2007, 2(10), e1058. doi: 10.1371/journal.pone.0001058 PMID: 17957242
- Ulici, V.; Hoenselaar, K.D.; Agoston, H.; McErlain, D.D.; Umoh, J.; Chakrabarti, S.; Holdsworth, D.W.; Beier, F. The role of Akt1 in terminal stages of endochondral bone formation: Angiogenesis and ossification. Bone, 2009, 45(6), 1133-1145. doi: 10.1016/j.bone.2009.08.003 PMID: 19679212
- Feng, F.B.; Qiu, H.Y. RETRACTED: Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed. Pharmacother., 2018, 102, 1209-1220. doi: 10.1016/j.biopha.2018.03.142 PMID: 29710540
- Abdurahman, A.; Li, X.; Li, J.; Liu, D.; Zhai, L.; Wang, X.; Zhang, Y.; Meng, Y.; Yokota, H.; Zhang, P. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model. Bone, 2022, 157, 116346. doi: 10.1016/j.bone.2022.116346 PMID: 35114427
- Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage, 2020, 28(4), 400-409. doi: 10.1016/j.joca.2020.02.027 PMID: 32081707
- Ma, J.; Zhu, L.; Zhou, Z.; Song, T.; Yang, L.; Yan, X. chen, A.; Ye, T.W. The calcium channel TRPV6 is a novel regulator of RANKL‐induced osteoclastic differentiation and bone absorption activity through the IGFPI3KAKT pathway. Cell Prolif., 2021, 54(1), e12955. doi: 10.1111/cpr.12955 PMID: 33159483
- Zhang, Z.; Zhang, X.; Zhao, D.; Liu, B.; Wang, B.; Yu, W.; Li, J.; Yu, X.; Cao, F.; Zheng, G.; Zhang, Y.; Liu, Y. TGF β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol. Med. Rep., 2019, 19(5), 3505-3518. doi: 10.3892/mmr.2019.10051 PMID: 30896852
Supplementary files
