Exploration of Key Genes Combining with Immune Infiltration Level and Tumor Mutational Burden in Hepatocellular Carcinoma


Cite item

Full Text

Abstract

Background:Hepatocellular carcinoma (HCC) is a lethal malignancy due to its heterogeneity and aggressive behavior. Recently, somatic mutations and tumor cell interactions with the surrounding tumor immune microenvironment (TIME) have been reported to participate in HCC carcinogenesis and predict HCC progression. In this study, we aimed to investigate the association between tumor mutational burden (TMB) and TIME in HCC. Additionally, we sought to identify differentially expressed genes (DEGs) associated with HCC prognosis and progression.

Methods:The expression, clinical, and mutational data were downloaded from the cancer genome atlas (TCGA) database. The immune infiltration levels and TMB levels of the HCC samples were estimated and the samples were divided into immune cluster (ICR)-1 and 2 based on immune infiltration score and high and low TMB groups based on TMB score. Thereafter, differential gene expression analysis was conducted to identify the DEGs in the ICR1/2 and high/low TMB groups, and the intersecting DEGs were selected. Thereafter, Cox regression analysis was performed on 89 significant DEGs, among which 19 were associated with prognosis. These 19 DEGs were then used to construct a prognostic model based on their expression levels and regression coefficients. Thereafter, we analyzed the DEGs in mutant and wildtype TP53 HCC samples and identified high BCL10 and TRAF3 expression in the mutant TP53 samples. BCL10 and TRAF3 expression was detected by real-time quantitative reverse transcription PCR and immunohistochemistry, and their clinical correlation, biological function, and immune infiltration levels were analyzed by chi-square analyses, Gene Set Enrichment Analysis (GSEA), and "ssGSEA", respectively.

Results:The results of our study revealed that immune infiltration level was correlated with TMB and that they synergistically predicted poor prognosis of HCC patients. DEGs enriched in immune-related pathways could serve as indicators of immunotherapy response in HCC. Among these DEGs, BCL10 and TRAF3 were highly expressed in HCC tissues, especially in the mutant TP53 group, and they co-operatively exhibited immunological function, thereby affecting HCC progression and prognosis.

Conclusion:In this study, we identified BCL10 and TRAF3 as potential prognostic indicators in HCC patients. Additionally, we found that BCL10 and TRAF3 influence TMB and TIME in HCC patients and can be used for the development of immune-based therapies for improving the long-term survival of HCC patients.

About the authors

Jing Chen

Department of Gastroenterology,, Affiliated Hospital of Nantong University, Medical School of Nantong University,

Email: info@benthamscience.net

Lu Zhang

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University,

Email: info@benthamscience.net

Cui-Hua Lu

Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University

Author for correspondence.
Email: info@benthamscience.net

Chen-Zhou Xu

, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Fouad, Y.; Lazarus, J.V.; Negro, F.; Peck-Radosavljevic, M.; Sarin, S.K.; Ferenci, P.; Esmat, G.; Ghazinian, H.; Nakajima, A.; Silva, M.; Lee, S.; Colombo, M. MAFLD considerations as a part of the global hepatitis C elimination effort: An international perspective. Aliment. Pharmacol. Ther., 2021, 53(10), 1080-1089. doi: 10.1111/apt.16346 PMID: 33751604
  3. Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol., 2020, 72(2), 250-261. doi: 10.1016/j.jhep.2019.08.025 PMID: 31954490
  4. Takeda, A.; Sanuki, N.; Tsurugai, Y.; Iwabuchi, S.; Matsunaga, K.; Ebinuma, H.; Imajo, K.; Aoki, Y.; Saito, H.; Kunieda, E. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer, 2016, 122(13), 2041-2049. doi: 10.1002/cncr.30008 PMID: 27062278
  5. Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314. doi: 10.1016/S0140-6736(18)30010-2 PMID: 29307467
  6. Rebouissou, S.; Franconi, A.; Calderaro, J.; Letouzé, E.; Imbeaud, S.; Pilati, C.; Nault, J.C.; Couchy, G.; Laurent, A.; Balabaud, C.; Bioulac-Sage, P.; Zucman-Rossi, J. Genotype-phenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression. Hepatology, 2016, 64(6), 2047-2061. doi: 10.1002/hep.28638 PMID: 27177928
  7. Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med., 2017, 377(25), 2500-2501. doi: 10.1056/NEJMc1713444 PMID: 29262275
  8. Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol., 2019, 30(1), 44-56. doi: 10.1093/annonc/mdy495 PMID: 30395155
  9. Panda, A; Betigeri, A; Subramanian, K; Ross, J; Pavlick, D; Ali, S; Markowski, P. Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors. JCO Precis. Oncol., 2017, 2017, PO.17.00146. doi: 10.1200/PO.17.00146
  10. Cao, D.; Xu, H.; Xu, X.; Guo, T.; Ge, W. High tumor mutation burden predicts better efficacy of immunotherapy: A pooled analysis of 103078 cancer patients. OncoImmunology, 2019, 8(9), e1629258. doi: 10.1080/2162402X.2019.1629258 PMID: 31428527
  11. Wu, H.X.; Wang, Z.X.; Zhao, Q.; Chen, D.L.; He, M.M.; Yang, L.P.; Wang, Y.N.; Jin, Y.; Ren, C.; Luo, H.Y.; Wang, Z.Q.; Wang, F. Tumor mutational and indel burden: A systematic pan-cancer evaluation as prognostic biomarkers. Ann. Transl. Med., 2019, 7(22), 640. doi: 10.21037/atm.2019.10.116 PMID: 31930041
  12. Kazdal, D; Endris, V; Allgäuer, M; Kriegsmann, M; Leichsenring, J; Volckmar, A; Harms, A Spatial and temporal heterogeneity of panel-based tumor mutational burden in pulmonary adenocarcinoma: Separating biology from technical artifacts. J. Thorac. Oncol., 2019, 14, 1935-1947.
  13. Hughes, R.M.; Simons, B.W.; Khan, H.; Miller, R.; Kugler, V.; Torquato, S.; Theodros, D.; Haffner, M.C.; Lotan, T.; Huang, J.; Davicioni, E.; An, S.S.; Riddle, R.C.; Thorek, D.L.J.; Garraway, I.P.; Fertig, E.J.; Isaacs, J.T.; Brennen, W.N.; Park, B.H.; Hurley, P.J. Asporin restricts mesenchymal stromal cell differentiation, alters the tumor microenvironment, and drives metastatic progression. Cancer Res., 2019, 79(14), 3636-3650. doi: 10.1158/0008-5472.CAN-18-2931 PMID: 31123087
  14. Peng, Y.; Liu, C.; Li, M.; Li, W.; Zhang, M.; Jiang, X.; Chang, Y.; Liu, L.; Wang, F.; Zhao, Q. Identification of a prognostic and therapeutic immune signature associated with hepatocellular carcinoma. Cancer Cell Int., 2021, 21(1), 98. doi: 10.1186/s12935-021-01792-4 PMID: 33568167
  15. Li, X.; Wenes, M.; Romero, P.; Huang, S.C.C.; Fendt, S.M.; Ho, P.C. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol., 2019, 16(7), 425-441. doi: 10.1038/s41571-019-0203-7 PMID: 30914826
  16. Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355. doi: 10.1126/science.aar4060 PMID: 29567705
  17. High TMB Predicts Immunotherapy Benefit. High TMB Predicts Immunotherapy Benefit. Cancer Discov., 2018, 8(6), 668. doi: 10.1158/2159-8290.CD-NB2018-048 PMID: 29661758
  18. Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; Ceccarelli, M.; Bontempi, G.; Noushmehr, H. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res., 2016, 44(8), e71. doi: 10.1093/nar/gkv1507 PMID: 26704973
  19. Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756. doi: 10.1101/gr.239244.118 PMID: 30341162
  20. Yi, M.; Nissley, D.V.; McCormick, F.; Stephens, R.M. ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications. Sci. Rep., 2020, 10(1), 10258. doi: 10.1038/s41598-020-66986-8 PMID: 32581224
  21. Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259. doi: 10.1007/978-1-4939-7493-1_12 PMID: 29344893
  22. Rasero, J.; Diez, I.; Cortes, J.M.; Marinazzo, D.; Stramaglia, S. Connectome sorting by consensus clustering increases separability in group neuroimaging studies. Netw. Neurosci., 2019, 3(2), 325-343. doi: 10.1162/netn_a_00074 PMID: 30793085
  23. Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kennedy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34. doi: 10.1186/s13073-017-0424-2 PMID: 28420421
  24. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550. doi: 10.1186/s13059-014-0550-8 PMID: 25516281
  25. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res., 2015, 43(Database issue), D1049-D1056. PMID: 25428369
  26. He, Y.; Jin, Y.J.; Zhang, Y.H.; Meng, H.X.; Zhao, B.S.; Jiang, Y.; Zhu, J.W.; Liang, G.Y.; Kong, D.; Jin, X.M. Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma. Transl. Res., 2015, 165(3), 407-416. doi: 10.1016/j.trsl.2014.09.005 PMID: 25445209
  27. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. , 2005, 102(43), 15545-15550. doi: 10.1073/pnas.0506580102 PMID: 16199517
  28. Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenetics, 2019, 11(1), 123. doi: 10.1186/s13148-019-0730-1 PMID: 31443682
  29. Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics, 2005, 21(20), 3940-3941. doi: 10.1093/bioinformatics/bti623 PMID: 16096348
  30. Park, S.Y. Nomogram: An analogue tool to deliver digital knowledge. J. Thorac. Cardiovasc. Surg., 2018, 155(4), 1793. doi: 10.1016/j.jtcvs.2017.12.107 PMID: 29370910
  31. Chen, Y.Y.; Zhang, X.N.; Xu, C.Z.; Zhou, D.H.; Chen, J.; Liu, Z.X. sun, Y.; Huang, W.; Qu, L.S. MCCC2 promotes HCC development by supporting leucine oncogenic function. Cancer Cell Int., 2021, 21(1), 22. doi: 10.1186/s12935-020-01722-w PMID: 33407468
  32. Ito, K.; Murphy, D. Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacometrics Syst. Pharmacol., 2013, 2(10), 79. doi: 10.1038/psp.2013.56 PMID: 24132163
  33. Zhou, Y.; Ding, J.; Qin, Z.; Wang, Y.; Zhang, J.; Jia, K.; Wang, Y.; Zhou, H.; Wang, F.; Jing, X. Predicting the survival rate of patients with hepatocellular carcinoma after thermal ablation by nomograms. Ann. Transl. Med., 2020, 8(18), 1159. doi: 10.21037/atm-20-6116 PMID: 33241008
  34. Wu, Q.; Zhou, L.; Lv, D.; Zhu, X.; Tang, H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J. Hematol. Oncol., 2019, 12(1), 53. doi: 10.1186/s13045-019-0739-0 PMID: 31142326
  35. Ilkhani, K.; Bastami, M.; Delgir, S.; Safi, A.; Talebian, S.; Alivand, M.R. The engaged role of tumor microenvironment in cancer metabolism: Focusing on cancer-associated fibroblast and exosome mediators. Anticancer. Agents Med. Chem., 2021, 21(2), 254-266. doi: 10.2174/18715206MTA53ODY5y PMID: 32914721
  36. Greten, T.F.; Lai, C.W.; Li, G.; Staveley-O’Carroll, K.F. Targeted and immune-based therapies for hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 510-524. doi: 10.1053/j.gastro.2018.09.051 PMID: 30287171
  37. Chan, K.K.; Bass, A.R. Autoimmune complications of immunotherapy: pathophysiology and management. BMJ, 2020, 369, m736. doi: 10.1136/bmj.m736 PMID: 32253223
  38. Schulze, K.; Nault, J.C.; Villanueva, A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J. Hepatol., 2016, 65(5), 1031-1042. doi: 10.1016/j.jhep.2016.05.035 PMID: 27262756
  39. Lin, C.; Yuan, G.; Hu, Z.; Zeng, Y.; Qiu, X.; Yu, H.; He, S. Bioinformatics analysis of the interactions among lncRNA, miRNA and mRNA expression, genetic mutations and epigenetic modifications in hepatocellular carcinoma. Mol. Med. Rep., 2019, 19(2), 1356-1364. PMID: 30535497
  40. Kawai-Kitahata, F.; Asahina, Y.; Tanaka, S.; Kakinuma, S.; Murakawa, M.; Nitta, S.; Watanabe, T.; Otani, S.; Taniguchi, M.; Goto, F.; Nagata, H.; Kaneko, S.; Tasaka-Fujita, M.; Nishimura-Sakurai, Y.; Azuma, S.; Itsui, Y.; Nakagawa, M.; Tanabe, M.; Takano, S.; Fukasawa, M.; Sakamoto, M.; Maekawa, S.; Enomoto, N.; Watanabe, M. Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features. J. Gastroenterol., 2016, 51(5), 473-486. doi: 10.1007/s00535-015-1126-4 PMID: 26553052
  41. Hainaut, P.; Pfeifer, G.P. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb. Perspect. Med., 2016, 6(11), a026179. doi: 10.1101/cshperspect.a026179 PMID: 27503997
  42. Lim, Y.P.; Lim, T.T.; Chan, Y.L.; Song, A.C.M.; Yeo, B.H.; Vojtesek, B.; Coomber, D.; Rajagopal, G.; Lane, D. The p53 knowledgebase: An integrated information resource for p53 research. Oncogene, 2007, 26(11), 1517-1521. doi: 10.1038/sj.onc.1209952 PMID: 16953220
  43. Yang, C.; Huang, X.; Li, Y.; Chen, J.; Lv, Y.; Dai, S. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief. Bioinform., 2020, 22(3), bbaa164. PMID: 32789496
  44. Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; Do, R.K.; Sun, Y.; Kingham, T.P.; D’Angelica, M.I.; Berger, M.F.; Hyman, D.M.; Jarnagin, W.; Klimstra, D.S.; Janjigian, Y.Y.; Solit, D.B.; Schultz, N.; Abou-Alfa, G.K. Prospective genotyping of hepatocellular carcinoma: Clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res., 2019, 25(7), 2116-2126. doi: 10.1158/1078-0432.CCR-18-2293 PMID: 30373752
  45. Zheng, C.; Zheng, L.; Yoo, J.K.; Guo, H.; Zhang, Y.; Guo, X.; Kang, B.; Hu, R.; Huang, J.Y.; Zhang, Q.; Liu, Z.; Dong, M.; Hu, X.; Ouyang, W.; Peng, J.; Zhang, Z. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell, 2017, 169(7), 1342-1356.e16. doi: 10.1016/j.cell.2017.05.035 PMID: 28622514
  46. Turvey, S.E.; Durandy, A.; Fischer, A.; Fung, S.Y.; Geha, R.S.; Gewies, A.; Giese, T.; Greil, J.; Keller, B.; McKinnon, M.L.; Neven, B.; Rozmus, J.; Ruland, J.; Snow, A.L.; Stepensky, P.; Warnatz, K. The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency. J. Allergy Clin. Immunol., 2014, 134(2), 276-284. doi: 10.1016/j.jaci.2014.06.015 PMID: 25087226
  47. Kuo, S.H.; Chen, L.T.; Yeh, K.H.; Wu, M.S.; Hsu, H.C.; Yeh, P.Y.; Mao, T.L.; Chen, C.L.; Doong, S.L.; Lin, J.T.; Cheng, A.L. Nuclear expression of BCL10 or nuclear factor kappa B predicts Helicobacter pylori-independent status of early-stage, high-grade gastric mucosa-associated lymphoid tissue lymphomas. J. Clin. Oncol., 2004, 22(17), 3491-3497. doi: 10.1200/JCO.2004.10.087 PMID: 15337797
  48. Aronchik, I.; Bjeldanes, L.F.; Firestone, G.L. Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells. Cancer Res., 2010, 70(12), 4961-4971. doi: 10.1158/0008-5472.CAN-09-3349 PMID: 20530686
  49. Lin, W.W.; Yi, Z.; Stunz, L.L.; Maine, C.J.; Sherman, L.A.; Bishop, G.A. The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development. Sci. Signal., 2015, 8(392), ra88. doi: 10.1126/scisignal.aaa5157 PMID: 26329582
  50. Braggio, E.; Keats, J.J.; Leleu, X.; Van Wier, S.; Jimenez-Zepeda, V.H.; Valdez, R.; Schop, R.F.J.; Price-Troska, T.; Henderson, K.; Sacco, A.; Azab, F.; Greipp, P.; Gertz, M.; Hayman, S.; Rajkumar, S.V.; Carpten, J.; Chesi, M.; Barrett, M.; Stewart, A.K.; Dogan, A.; Bergsagel, P.L.; Ghobrial, I.M.; Fonseca, R. Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom’s macroglobulinemia. Cancer Res., 2009, 69(8), 3579-3588. doi: 10.1158/0008-5472.CAN-08-3701 PMID: 19351844

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers