Curcumin Reduces Hypoxia/Reperfusion Injury of Cardiomyocytes by Stimulating Vascular Endothelial Cells to Secrete FGF2


Cite item

Full Text

Abstract

Objective::Endothelial cells (ECs) can provide cell protection for cardiomyocytes (CMs) under hypoxia-reoxygenation (HR) conditions by secreting derived factors. This study aimed to explore the role of curcumin (CUR) in ECs for protecting CMs from HR injury.

Methods::A co-culture system for ECs and CMs was set up, and subjected to HR. The transcription, expression, and secretion of FGF2 were detected by RT-qPCR, western blot, and ELISA, respectively. siRNAs specifically targeting FGF2 were transfected into ECs. FGF2 receptor- specific inhibitors (AZD4547) were used to treat CMs.

Results::The co-culture with ECs did not affect the proliferation of CMs, while CUR and ECs co-culture had a synergistic effect on promoting the proliferation of CMs in HR. Furthermore, the co-culture with ECs did not affect the apoptosis and autophagy of CMs in HR. However, the co-culture of ECs after CUR treatment inhibited the apoptosis and autophagy of CMs in HR. CUR treatment significantly enhanced FGF2 mRNA, protein, and secretion levels of ECs in HR. In addition, CUR treatment increased FGF2 levels in the CMs medium in the ECs and CMs co-culture system. The reduction of FGF2 levels in the medium and the inhibition of FGF2 receptors significantly inhibited the proliferation of CMs and significantly promoted the apoptosis and autophagy of CMs in HR.

Conclusion::Focusing on the protective effects of CUR and ECs on cardiomyocytes is of great significance for the treatment of clinical myocardial HR injury.

About the authors

Jian-kun Cui

, Heilongjiang University of Chinese Medicine

Email: info@benthamscience.net

Mingming Fan

, Nangang Branch of Heilongjiang Academy of Traditional Chinese Medicine

Email: info@benthamscience.net

Qinwen Wang

Department of Traditional Chinese Medicine,, Beijing Garrison District Haidian Retired Cadres Twenty- sixth

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bosnjak, Z.J.; Ge, Z.D. The application of remote ischemic conditioning in cardiac surgery. F1000 Res., 2017, 6, 928. doi: 10.12688/f1000research.11018.1 PMID: 28690837
  2. Hernández-Reséndiz, S.; Muñoz-Vega, M.; Contreras, W.E.; Crespo-Avilan, G.E.; Rodriguez-Montesinos, J.; Arias-Carrión, O.; Pérez-Méndez, O.; Boisvert, W.A.; Preissner, K.T.; Cabrera-Fuentes, H.A. Responses of endothelial cells towards ischemic conditioning following acute myocardial infarction. Cond. Med., 2018, 1(5), 247-258. PMID: 30338315
  3. Yu, H.; Kalogeris, T.; Korthuis, R.J. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic. Biol. Med., 2019, 135, 182-197. doi: 10.1016/j.freeradbiomed.2019.02.031 PMID: 30849489
  4. Leucker, T.M.; Ge, Z.D.; Procknow, J.; Liu, Y.; Shi, Y.; Bienengraeber, M.; Warltier, D.C.; Kersten, J.R. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury. PLoS One, 2013, 8(7), e70088. doi: 10.1371/journal.pone.0070088 PMID: 23894596
  5. Liu, Y.; Paterson, M.; Baumgardt, S.L.; Irwin, M.G.; Xia, Z.; Bosnjak, Z.J.; Ge, Z.D. Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning. Cardiovasc. Res., 2019, 115(1), 168-178. doi: 10.1093/cvr/cvy157 PMID: 29931049
  6. Zicola, E.; Arrigo, E.; Mancardi, D. H2S pretreatment is promigratory and decreases ischemia/reperfusion injury in human microvascular endothelial cells. Oxid. Med. Cell. Longev., 2021, 2021, 1-13. doi: 10.1155/2021/8886666 PMID: 33953839
  7. Yang, Q.; He, G.W.; Underwood, M.J.; Yu, C.M. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: Perspectives and implications for postischemic myocardial protection. Am. J. Transl. Res., 2016, 8(2), 765-777. PMID: 27158368
  8. Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; Lima, R.R. An updated review on the multifaceted therapeutic potential of Calendula officinalis L. Pharmaceuticals (Basel), 2023, 16(4), 611. doi: 10.3390/ph16040611 PMID: 37111369
  9. Carmo Bastos, M.L.; Silva-Silva, J.V.; Neves Cruz, J.; Palheta da Silva, A.R.; Bentaberry-Rosa, A.A.; da Costa Ramos, G.; de Sousa Siqueira, J.E.; Coelho-Ferreira, M.R.; Percário, S.; Santana Barbosa Marinho, P.; Marinho, A.M.R.; de Oliveira Bahia, M.; Dolabela, M.F. Alkaloid from Geissospermum sericeum benth. & hook.f. ex miers (apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells. Pharmaceuticals (Basel), 2023, 16(5), 765. doi: 10.3390/ph16050765 PMID: 37242548
  10. Lima, A.M.; Siqueira, A.S.; Möller, M.L.S.; Souza, R.C.; Cruz, J.N.; Lima, A.R.J.; Silva, R.C.; Aguiar, D.C.F.; Junior, J.L.S.G.V.; Gonçalves, E.C. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J. Biomol. Struct. Dyn., 2022, 40(3), 1064-1073. doi: 10.1080/07391102.2020.1821782 PMID: 32990187
  11. Boarescu, P.M.; Boarescu, I. Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bulboacă, A.E.; Nicula, C.; Râjnoveanu, R.M.; Bolboacă, S.D. Curcumin nanoparticles protect against isoproterenol induced myocardial infarction by alleviating myocardial tissue oxidative stress, electrocardiogram, and biological changes. Molecules, 2019, 24(15), 2802. doi: 10.3390/molecules24152802 PMID: 31374848
  12. Li, Y.; Tian, L.; Sun, D.; Yin, D. Retracted: Curcumin ameliorates atherosclerosis through upregulation of miR-126. J. Cell. Physiol., 2019, 234(11), 21049-21059. doi: 10.1002/jcp.28708 PMID: 31016760
  13. Jiankun, Cui. N.G.; Meng, F.; Shi, L.; Tian, G.; Yang, G. Demethoxycurcumin regulates autophagy through PI3K-Akt-mTOR signaling pathway to protect myocardial ischemia-reperfusion injury in rats. J. Chin. Med., 2020, 48(8), 5. doi: 10.19664/j.cnki.1002-2392.200137
  14. Luo, R.; Zhao, L.; Li, S.; Chen, P.; Wang, L.; Yu, H.; Cai, K.; Yu, Q.; Tian, W. Curcumin alleviates palmitic acid-induced LOX-1 upregulation by suppressing endoplasmic reticulum stress in HUVECs. BioMed Res. Int., 2021, 2021, 1-13. doi: 10.1155/2021/9983725 PMID: 34471643
  15. Zhou, X.; Afzal, S.; Zheng, Y.F.; Münch, G.; Li, C.G. Synergistic protective effect of curcumin and resveratrol against oxidative stress in endothelial EAhy926 cells. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-13. doi: 10.1155/2021/2661025 PMID: 34518768
  16. Manning, J.R.; Perkins, S.O.; Sinclair, E.A.; Gao, X.; Zhang, Y.; Newman, G.; Pyle, W.G.; Schultz, J.E.J. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(10), H1382-H1396. doi: 10.1152/ajpheart.00613.2012 PMID: 23479264
  17. Murphy, E.; Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev., 2008, 88(2), 581-609. doi: 10.1152/physrev.00024.2007 PMID: 18391174
  18. Xiao, J.; Lv, Y.; Lin, S.; Jin, L.; Zhang, Y.; Wang, X.; Ma, J.; Hu, K.; Feng, W.; Cai, L.; Li, X.; Tan, Y. Cardiac protection by basic fibroblast growth factor from ischemia/reperfusion-induced injury in diabetic rats. Biol. Pharm. Bull., 2010, 33(3), 444-449. doi: 10.1248/bpb.33.444 PMID: 20190407
  19. Sun, Y.; Xu, H.; Xu, X.; Wang, H.; Yuan, Y.; An, Z.; Xu, Z.; Wang, G. A novel method to obtain rat aortic media for primary culture of rat aortic smooth muscle cells. In Vitro Cell. Dev. Biol. Anim., 2021, 57(7), 726-734. doi: 10.1007/s11626-021-00615-0 PMID: 34462813
  20. Chen, X.; Tong, G.; Chen, S. Basic fibroblast growth factor protects against liver ischemia-reperfusion injury via the Nrf2/Hippo signaling pathway. Tissue Cell, 2022, 79, 101921. doi: 10.1016/j.tice.2022.101921 PMID: 36150335
  21. Villanueva, S.; Cespedes, C.; Gonzalez, A.; Vio, C.P. bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291(6), R1677-R1687. doi: 10.1152/ajpregu.00023.2006 PMID: 16873559
  22. Villanueva, S.; Cespedes, C.; Gonzalez, A.A.; Roessler, E.; Vio, C.P. Inhibition of bFGF-receptor type 2 increases kidney damage and suppresses nephrogenic protein expression after ischemic acute renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 294(3), R819-R828. doi: 10.1152/ajpregu.00273.2007 PMID: 18184769
  23. Chen, P.; Zhang, H.; Zhang, Q.; Zhou, W.; Deng, Y.; Hu, X.; Zhang, L. Basic fibroblast growth factor reduces permeability and apoptosis of human brain microvascular endothelial cells in response to oxygen and glucose deprivation followed by reoxygenation via the fibroblast growth factor receptor 1 (FGFR1)/ERK pathway. Med. Sci. Monit., 2019, 25, 7191-7201. doi: 10.12659/MSM.918626 PMID: 31551405
  24. Bonfanti, R.; Musumeci, T.; Russo, C.; Pellitteri, R. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. Eur. J. Pharmacol., 2017, 796, 62-68. doi: 10.1016/j.ejphar.2016.11.038 PMID: 27889433
  25. Zhang, S.; Tang, D.; Zang, W.; Yin, G.; Dai, J.; Sun, Y.; Yang, Z.; Hoffman, R.M.; Guo, X. Synergistic inhibitory effect of traditional chinese medicine astragaloside IV and curcumin on tumor growth and angiogenesis in an orthotopic nude-mouse model of human hepatocellular carcinoma. Anticancer Res., 2017, 37(2), 465-474. doi: 10.21873/anticanres.11338 PMID: 28179291
  26. Latimer, B.; Ekshyyan, O.; Nathan, N.; Moore-Medlin, T.; Rong, X.; Ma, X.; Khandelwal, A.; Christy, H.T.; Abreo, F.; McClure, G.; Vanchiere, J.A.; Caldito, G.; Dugas, T.; McMartin, K.; Lian, T.; Mehta, V.; Nathan, C.A. Enhanced systemic bioavailability of curcumin through transmucosal administration of a novel microgranular formulation. Anticancer Res., 2015, 35(12), 6411-6418. PMID: 26637850
  27. Wang, R.; Li, J.; Zhao, Y.; Li, Y.; Yin, L. Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis. Breast Cancer, 2018, 25(2), 206-212. doi: 10.1007/s12282-017-0816-6 PMID: 29139094
  28. Tong, G.; Liang, Y.; Xue, M.; Chen, X.; Wang, J.; An, N.; Wang, N.; Chen, Y.; Wang, Y.; Jin, L.; Cong, W. The protective role of bFGF in myocardial infarction and hypoxia cardiomyocytes by reducing oxidative stress via Nrf2. Biochem. Biophys. Res. Commun., 2020, 527(1), 15-21. doi: 10.1016/j.bbrc.2020.04.053 PMID: 32446359

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers