Effect of Fibroblast Growth Factor-21 Molecule on Coronary Collateral Development


Cite item

Full Text

Abstract

Background:Collateral arteries provide an alternative source to the myocardium resulting from ischemia due to occlusive coronary artery disease and may help preserve myocardial function in the case of coronary artery disease (CAD). Although collateral development is so important, its pathophysiology has not been fully elucidated. Till now, no study has investigated the relationship between Fibroblast growth factor-21(FGF-21) and coronary collateral.

Objective:This study aims to investigate the pathophysiology of coronary collateral development.

Methods:In our study, which we planned as a case-control, 60 consecutive patients with ≥90 stenosis in at least one large coronary artery as a result of coronary angiography (CAG) and 30 patients with normal coronary angiography were included in the study cross-sectional. Demographic, echocardiographic and laboratory data were recorded. Coronary collateral circulation was evaluated using the Rentrop-Cohen method. FGF-21 levels were measured in all individuals.

Results:In the analysis, no significant difference was observed between the two groups in basic biochemical parameters other than HDL (p>0.05 for all). FGF-21 level was statistically significantly higher in the patient group compared to the control group (p: 0.003). Also, the FGF-21 level was found to be statistically significantly higher in the good collateral circulation group than the poor (p:0.006). Univariate and multivariate logistic regression analysis was performed to predict the presence of collateral. We found that FGF-21(p=0.006), and C-reactive protein (p=0.020) predicted the presence of collateral independently.

Conclusion:Collateral formation and cardiac prognosis are closely related. Our study is the first to investigate the relationship between collateral formation and FGF-21. Our study showed that the FGF-21 level is an independent predictor of collateral formation. In addition, there was a significant difference between bad and good collateral formation regarding FGF-21 levels.

About the authors

Halil Fedai

Clinic of Cardiology, Sanliurfa Training and Research Hospital

Author for correspondence.
Email: info@benthamscience.net

Mustafa Tascanov

Department of Cardiology, Faculty of Medicine, Harran University

Email: info@benthamscience.net

References

  1. Hennekens, C.H. Increasing burden of cardiovascular disease: current knowledge and future directions for research on risk factors. Circulation, 1998, 97(11), 1095-1102. doi: 10.1161/01.CIR.97.11.1095 PMID: 9531257
  2. Kosmopoulos, M.; Drekolias, D.; Zavras, P.D.; Piperi, C.; Papavassiliou, A.G. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(3), 611-619. doi: 10.1016/j.bbadis.2019.01.006 PMID: 30611860
  3. Schaper, W. Angiogenesis in the adult heart. Basic Res. Cardiol., 1991, 86(2), 51-56. PMID: 1719953
  4. Pitt, B. Interarterial coronary anastomoses. Occurrence in normal hearts and in certain pathologic conditions. Circulation, 1959, 20(5), 816-822. doi: 10.1161/01.CIR.20.5.816 PMID: 14433299
  5. Seiler, C.; Stoller, M.; Pitt, B.; Meier, P. The human coronary collateral circulation: Development and clinical importance. Eur. Heart J., 2013, 34(34), 2674-2682. doi: 10.1093/eurheartj/eht195 PMID: 23739241
  6. Seiler, C. The human coronary collateral circulation. Eur. J. Clin. Invest., 2011, 40(5), 465-476.
  7. Matsunaga, T.; Warltier, D.C.; Weihrauch, D.W.; Moniz, M.; Tessmer, J.; Chilian, W.M. Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation, 2000, 102(25), 3098-3103. doi: 10.1161/01.CIR.102.25.3098 PMID: 11120701
  8. Akboga, M.K.; Akyel, A.; Sahinarslan, A.; Demirtas, C.Y.; Yayla, C.; Boyaci, B.; Yalcin, R. Relationship between plasma apelin level and coronary collateral circulation. Atherosclerosis, 2014, 235(2), 289-294. doi: 10.1016/j.atherosclerosis.2014.04.029 PMID: 24905139
  9. Yamada, H.; Kuro-o, M.; Hara, K.; Ueda, Y.; Kusaka, I.; Kakei, M.; Ishikawa, S. The urinary phosphate to serum fibroblast growth factor 23 ratio is a useful marker of atherosclerosis in early-stage chronic kidney disease. PLoS One, 2016, 11(8), e0160782. doi: 10.1371/journal.pone.0160782 PMID: 27504998
  10. Joki, Y.; Ohashi, K.; Yuasa, D.; Shibata, R.; Ito, M.; Matsuo, K.; Kambara, T.; Uemura, Y.; Hayakawa, S.; Hiramatsu-Ito, M.; Kanemura, N.; Ogawa, H.; Daida, H.; Murohara, T.; Ouchi, N. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem. Biophys. Res. Commun., 2015, 459(1), 124-130. doi: 10.1016/j.bbrc.2015.02.081 PMID: 25712519
  11. Liu, S.Q.; Roberts, D.; Kharitonenkov, A.; Zhang, B.; Hanson, S.M.; Li, Y.C.; Zhang, L.Q.; Wu, Y.H. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci. Rep., 2013, 3(1), 2767. doi: 10.1038/srep02767 PMID: 24067542
  12. Patel, V.; Adya, R.; Chen, J.; Ramanjaneya, M.; Bari, M.F.; Bhudia, S.K.; Hillhouse, E.W.; Tan, B.K.; Randeva, H.S. Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One, 2014, 9(2), e87102. doi: 10.1371/journal.pone.0087102 PMID: 24498293
  13. Peter Rentrop, K.; Cohen, M.; Blanke, H.; Phillips, R.A. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Am. Coll. Cardiol., 1985, 5(3), 587-592. doi: 10.1016/S0735-1097(85)80380-6 PMID: 3156171
  14. Meier, P.; Hemingway, H.; Lansky, A.J.; Knapp, G.; Pitt, B.; Seiler, C. The impact of the coronary collateral circulation on mortality: A meta-analysis. Eur. Heart J., 2012, 33(5), 614-621. doi: 10.1093/eurheartj/ehr308 PMID: 21969521
  15. Regmi, M.; Siccardi, M.A. Coronary Artery Disease Prevention. In: StatPearls; StatPearls Publishing: Treasure Island, (FL), 2021.
  16. Hansen, J.F. Coronary collateral circulation: Clinical significance and influence on survival in patients with coronary artery occlusion. Am. Heart J., 1989, 117(2), 290-295. doi: 10.1016/0002-8703(89)90771-0 PMID: 2916404
  17. Levin, D.C. Pathways and functional significance of the coronary collateral circulation. Circulation, 1974, 50(4), 831-837. doi: 10.1161/01.CIR.50.4.831 PMID: 4425386
  18. Cohen, M.; Sherman, W.; Rentrop, K.P.; Gorlin, R. Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J. Am. Coll. Cardiol., 1989, 13(2), 297-303. doi: 10.1016/0735-1097(89)90502-0 PMID: 2521503
  19. Koerselman, J.; van der Graaf, Y.; de Jaegere, P.P.T.; Grobbee, D.E. Coronary Collaterals. Circulation, 2003, 107(19), 2507-2511. doi: 10.1161/01.CIR.0000065118.99409.5F PMID: 12756191
  20. Nelson, R.H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care, 2013, 40(1), 195-211. doi: 10.1016/j.pop.2012.11.003 PMID: 23402469
  21. Pohl, T.; Seiler, C.; Billinger, M.; Herren, E.; Wustmann, K.; Mehta, H.; Windecker, S.; Eberli, F.R.; Meier, B. Frequency distribution of collateral flow and factors influencing collateral channel development. J. Am. Coll. Cardiol., 2001, 38(7), 1872-1878. doi: 10.1016/S0735-1097(01)01675-8 PMID: 11738287

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers