Network Pharmacology and Experimental Validation Explore the Pharmacological Mechanisms of Herb Pair for Treating Rheumatoid Arthritis


Cite item

Full Text

Abstract

Objective:This study aimed to elucidate the multitarget mechanism of the Mori Ramulus - Taxilli Herba (MT) herb pair in treating rheumatoid arthritis (RA).

Methods:The targets of the herb pair and RA were predicted from databases and screened through cross-analysis. The core targets were obtained using protein-protein interaction (PPI) network analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, animal experiments were conducted to validate the anti-RA effect and mechanism of this herb pair.

Results:This approach successfully identified 9 active compounds of MT that interacted with 6 core targets (AKT1, TNF, IL6, TP53, VEGFA, and IL1β). Pathway and functional enrichment analyses revealed that MT had significant effects on the TNF and IL-17 signaling pathways. The consistency of interactions between active components and targets in these pathways was confirmed through molecular docking. Moreover, the potential therapeutic effect of MT was verified in vivo, demonstrating its ability to effectively relieve inflammation by regulating these targeted genes and pathways.

Conclusion:The present work suggests that the therapeutic effect of MT herb pair on RA may be attributed to its ability to regulate the TNF signaling pathway and IL-17 signaling pathway.

About the authors

Xi-Xi Xu

Department of Pharmacy, Zhongda Hospital, Southeast University

Email: info@benthamscience.net

Hua Shao

Department of Pharmacy, Zhongda Hospital, Southeast University

Author for correspondence.
Email: info@benthamscience.net

Qiao-Xue Wang

Department of Pharmacy, Zhongda Hospital, Southeast University

Email: info@benthamscience.net

Zi-Yuan Wang

Public Experimental Platform, China Pharmaceutical University

Email: info@benthamscience.net

References

  1. Smith, M.H.; Berman, J.R. What is rheumatoid arthritis? JAMA, 2022, 327(12), 1194. doi: 10.1001/jama.2022.0786 PMID: 35315883
  2. Gravallese, E.M.; Firestein, G.S. Rheumatoid arthritis - Common origins, divergent mechanisms. N. Engl. J. Med., 2023, 388(6), 529-542. doi: 10.1056/NEJMra2103726 PMID: 36780677
  3. Roberts-Thomson, P.J.; Jones, M.E.; Walker, J.G.; Macfarlane, J.G.; Smith, M.D.; Ahern, M.J. Stochastic processes in the causation of rheumatic disease. J. Rheumatol., 2002, 29(12), 2628-2634. PMID: 12465164
  4. Klareskog, L.; van der Heijde, D.; de Jager, J.P.; Gough, A.; Kalden, J.; Malaise, M.; Mola, E.M.; Pavelka, K.; Sany, J.; Settas, L.; Wajdula, J.; Pedersen, R.; Fatenejad, S.; Sanda, M. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: Double-blind randomised controlled trial. Lancet, 2004, 363(9410), 675-681. doi: 10.1016/S0140-6736(04)15640-7 PMID: 15001324
  5. Sánchez-Piedra, C.; Sueiro-Delgado, D.; García-González, J.; Ros-Vilamajo, I.; Prior-Español, A.; Moreno-Ramos, M.J.; Garcia-Magallon, B.; Calvo-Gutiérrez, J.; Perez-Vera, Y.; Martín-Domenech, R.; Ruiz-Montesino, D.; Vela-Casasempere, P.; Expósito, L.; Sánchez-Alonso, F.; González-Davila, E.; Díaz-González, F. Changes in the use patterns of bDMARDs in patients with rheumatic diseases over the past 13 years. Sci. Rep., 2021, 11(1), 15051. doi: 10.1038/s41598-021-94504-x PMID: 34302036
  6. Pelechas, E.; Voulgari, P.; Drosos, A. Golimumab for rheumatoid arthritis eleftherios. J. Clin. Med., 2019, 8(3), 387. doi: 10.3390/jcm8030387 PMID: 30897745
  7. Breedveld, F.C.; Weisman, M.H.; Kavanaugh, A.F.; Cohen, S.B.; Pavelka, K.; Vollenhoven, R.; Sharp, J.; Perez, J.L.; Spencer-Green, G.T. The PREMIER study: A multicenter, randomized, double‐blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum., 2006, 54(1), 26-37. doi: 10.1002/art.21519 PMID: 16385520
  8. Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res., 2018, 6(1), 15. doi: 10.1038/s41413-018-0016-9 PMID: 29736302
  9. Lin, W.W.; Lu, Y.C.; Huang, B.C.; Chuang, C.H.; Cheng, Y.A.; Chen, I.J.; Liu, H.J.; Ho, K.W.; Liao, T.Y.; Liu, E.S.; Wu, T.Y.; Chang, L.S.; Hong, S.T.; Cheng, T.L. Selective activation of pro-anti-IL-1β antibody enhances specificity for autoinflammatory disorder therapy. Sci. Rep., 2021, 11(1), 14846. doi: 10.1038/s41598-021-94298-y PMID: 34290297
  10. Cohen, S.B.; Dore, R.K.; Lane, N.E.; Ory, P.A.; Peterfy, C.G.; Sharp, J.T.; van der Heijde, D.; Zhou, L.; Tsuji, W.; Newmark, R. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: A twelve‐month, multicenter, randomized, double‐blind, placebo‐controlled, phase II clinical trial. Arthritis Rheum., 2008, 58(5), 1299-1309. doi: 10.1002/art.23417 PMID: 18438830
  11. Takeuchi, T.; Tanaka, Y.; Ishiguro, N.; Yamanaka, H.; Yoneda, T.; Ohira, T.; Okubo, N.; Genant, H.K.; van der Heijde, D. Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose–response study of AMG 162 (D enosumab) in patients with R heumato I d arthritis on methotrexate to V alidate inhibitory effect on bone E rosion (DRIVE)—a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann. Rheum. Dis., 2016, 75(6), 983-990. doi: 10.1136/annrheumdis-2015-208052 PMID: 26585988
  12. George, M.D.; Baker, J.F.; Winthrop, K.; Hsu, J.Y.; Wu, Q.; Chen, L.; Xie, F.; Yun, H.; Curtis, J.R. Risk for serious infection with low-dose glucocorticoids in patients with rheumatoid arthritis. Ann. Intern. Med., 2020, 173(11), 870-878. doi: 10.7326/M20-1594 PMID: 32956604
  13. Chen, Y.R.; Hsieh, F.I.; Chang, C.C.; Chi, N.F.; Wu, H.C.; Chiou, H.Y. Effect on risk of stroke and acute myocardial infarction of nonselective nonsteroidal anti-inflammatory drugs in patients with rheumatoid arthritis. Am. J. Cardiol., 2018, 121(10), 1271-1277. doi: 10.1016/j.amjcard.2018.01.044 PMID: 29548675
  14. Bergstra, S.A.; Sepriano, A.; Kerschbaumer, A.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.E.; Takeuchi, T.; Hyrich, K.L.; Winthrop, K.L.; Aletaha, D.; Stamm, T.A.; Schoones, J.W.; Smolen, J.S.; Landewé, R.B.M. Efficacy, duration of use and safety of glucocorticoids: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis., 2023, 82(1), 81-94. doi: 10.1136/ard-2022-223358 PMID: 36410794
  15. He, B.; Li, Y.; Luo, W.; Cheng, X.; Xiang, H.; Zhang, Q.; He, J.; Peng, W. The risk of adverse effects of TNF-α inhibitors in patients with rheumatoid arthritis: A network meta-analysis. Front. Immunol., 2022, 13, 814429. doi: 10.3389/fimmu.2022.814429 PMID: 35250992
  16. Hoisnard, L.; Pina Vegas, L.; Dray-Spira, R.; Weill, A.; Zureik, M.; Sbidian, E. Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: A nationwide cohort study. Ann. Rheum. Dis., 2023, 82(2), 182-188. doi: 10.1136/ard-2022-222824 PMID: 36198438
  17. Mirzaei, A.; Jahed, S.A.; Amini Kadijani, A.; Zabihiyeganeh, M. Risk of infection in postmenopausal women with rheumatoid arthritis and osteoporosis taking denosumab and bDMARDS. Med. J. Islam. Repub. Iran, 2021, 35, 12. doi: 10.47176/mjiri.35.12 PMID: 33996663
  18. Curtis, J.R.; Xie, F.; Yun, H.; Saag, K.G.; Chen, L.; Delzell, E. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol., 2015, 67(6), 1456-1464. doi: 10.1002/art.39075 PMID: 25708920
  19. Li, S.; Zhang, B.; Jiang, D. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics, 2010, 11(S11), S6. doi: 10.1186/1471-2105-11-S11-S6
  20. Wu, S.S.; Xu, X.X.; Shi, Y.Y.; Chen, Y.; Li, Y.Q.; Jiang, S.Q.; Wang, T.; Li, P.; Li, F. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from herb couple on rheumatoid arthritis in rats. J. Ethnopharmacol., 2022, 288, 114969. doi: 10.1016/j.jep.2022.114969 PMID: 34999146
  21. Yue, S.J.; Liu, J.; Feng, W.W.; Zhang, F.L.; Chen, J.X.; Xin, L.T.; Peng, C.; Guan, H.S.; Wang, C.Y.; Yan, D. System pharmacology-based dissection of the synergistic mechanism of Huangqi and Huanglian for diabetesmellitus. Front. Pharmacol., 2017, 8, 694. doi: 10.3389/fphar.2017.00694 PMID: 29051733
  22. Yao, Y.; Zhang, X.; Wang, Z.; Zheng, C.; Li, P.; Huang, C.; Tao, W.; Xiao, W.; Wang, Y.; Huang, L.; Yang, L. Deciphering the combination principles of Traditional Chinese Medicine from a systems pharmacology perspective based on Ma-huang Decoction. J. Ethnopharmacol., 2013, 150(2), 619-638. doi: 10.1016/j.jep.2013.09.018 PMID: 24064232
  23. Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 2012, 7(5), e37608. doi: 10.1371/journal.pone.0037608 PMID: 22666371
  24. Wang, X.; Xu, X.; Ma, Z.; Huo, Y.; Xiao, Z.; Li, Y.; Wang, Y. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA, 2011, 17(8), 1511-1528. doi: 10.1261/rna.2732611 PMID: 21712399
  25. Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Yang, L. A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res., 2012, 40(16), 7622-7632. doi: 10.1093/nar/gks517 PMID: 22661584
  26. Xu, X.; Ma, Z.; Wang, X.; Xiao, Z.T.; Li, Y.; Xue, Z.H.; Wang, Y.H. Water’s potential role: Insights from studies of the p53 core domain. J. Struct. Biol., 2012, 177(2), 358-366. doi: 10.1016/j.jsb.2011.12.008 PMID: 22197648
  27. Wang, X.; Xu, X.; Zhu, S.; Xiao, Z.; Ma, Z.; Li, Y.; Wang, Y. Molecular dynamics simulation of conformational heterogeneity in transportin 1. Proteins, 2012, 80(2), 382-397. doi: 10.1002/prot.23193 PMID: 22105828
  28. Zou, Z.; Sun, M.; Yin, W.; Yang, L.; Kong, L. Avicularin suppresses cartilage extracellular matrix degradation and inflammation via TRAF6/MAPK activation. Phytomedicine, 2021, 91, 153657. doi: 10.1016/j.phymed.2021.153657 PMID: 34371251
  29. Panek-Krzyśko, A.; Stompor-Gorący, M. The pro-health benefits of morusin administration-an updated review. Nutrients, 2021, 13(9), 3043. doi: 10.3390/nu13093043 PMID: 34578920
  30. Shingnaisui, K.; Dey, T.; Manna, P.; Kalita, J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. J. Ethnopharmacol., 2018, 220, 35-43. doi: 10.1016/j.jep.2018.03.038 PMID: 29605674
  31. Ko, W.; Yoon, C.S.; Kim, K.W.; Lee, H.; Kim, N.; Woo, E.R.; Kim, Y.C.; Kang, D.G.; Lee, H.S.; Oh, H.; Lee, D.S. Neuroprotective and anti-inflammatory effects of Kuwanon C from cudrania tricuspidata are mediated by heme oxygenase-1 in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. Int. J. Mol. Sci., 2020, 21(14), 4839. doi: 10.3390/ijms21144839 PMID: 32650596
  32. Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci., 2021, 22(20), 10922. doi: 10.3390/ijms222010922 PMID: 34681582
  33. Komatsu, N.; Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis — immune cell–fibroblast–bone interactions. Nat. Rev. Rheumatol., 2022, 18(7), 415-429. doi: 10.1038/s41584-022-00793-5 PMID: 35705856
  34. Burmester, G.R.; Bijlsma, J.W.J.; Cutolo, M.; McInnes, I.B. Managing rheumatic and musculoskeletal diseases — past, present and future. Nat. Rev. Rheumatol., 2017, 13(7), 443-448. doi: 10.1038/nrrheum.2017.95 PMID: 28615732
  35. Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approach. Nat. Plants, 2017, 3(8), 17109. doi: 10.1038/nplants.2017.109 PMID: 28758992
  36. Sasako, T.; Umehara, T.; Soeda, K.; Kaneko, K.; Suzuki, M.; Kobayashi, N.; Okazaki, Y.; Tamura-Nakano, M.; Chiba, T.; Accili, D.; Kahn, C.R.; Noda, T.; Asahara, H.; Yamauchi, T.; Kadowaki, T.; Ueki, K. Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice. Nat. Commun., 2022, 13(1), 5655. doi: 10.1038/s41467-022-33008-2 PMID: 36198696
  37. Yin, B.F.; Li, Z.L.; Yan, Z.Q.; Guo, Z.; Liang, J.W.; Wang, Q.; Zhao, Z.D.; Li, P.L.; Hao, R.C.; Han, M.Y.; Li, X.T.; Mao, N.; Ding, L.; Chen, D.F.; Gao, Y.; Zhu, H. Psoralen alleviates radiation-induced bone injury by rescuing skeletal stem cell stemness through AKT-mediated upregulation of GSK-3β and NRF2. Stem Cell Res. Ther., 2022, 13(1), 241. doi: 10.1186/s13287-022-02911-2 PMID: 35672836
  38. McInnes, I.B.; Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet, 2017, 389(10086), 2328-2337. doi: 10.1016/S0140-6736(17)31472-1 PMID: 28612747
  39. Calvo, M.; Dawes, J.M.; Bennett, D.L.H. The role of the immune system in the generation of neuropathic pain. Lancet Neurol., 2012, 11(7), 629-642. doi: 10.1016/S1474-4422(12)70134-5 PMID: 22710756
  40. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, mmunity, and disease. Csh Perspect Biol., 2014, 6(10), a16295.
  41. Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and specificity: Insights from the interleukin 6 family of cytokines. Immunity, 2019, 50(4), 812-831. doi: 10.1016/j.immuni.2019.03.027 PMID: 30995501
  42. Uciechowski, P.; Dempke, W.C.M. Interleukin-6: A masterplayer in the cytokine network. Oncology, 2020, 98(3), 131-137. doi: 10.1159/000505099 PMID: 31958792
  43. Narazaki, M.; Tanaka, T.; Kishimoto, T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev. Clin. Immunol., 2017, 13(6), 535-551. doi: 10.1080/1744666X.2017.1295850 PMID: 28494214
  44. Bian, Y.; Dong, Y.; Sun, J.; Sun, M.; Hou, Q.; Lai, Y.; Zhang, B. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. J. Agric. Food Chem., 2020, 68(1), 160-167. doi: 10.1021/acs.jafc.9b06294 PMID: 31825618
  45. Borghi, A.; Verstrepen, L.; Beyaert, R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem. Pharmacol., 2016, 116, 1-10. doi: 10.1016/j.bcp.2016.03.009 PMID: 26993379
  46. Jafarinia, M.; Sadat Hosseini, M. kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani, K.M.; Eskandari, N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin. Immunol., 2020, 16(1), 36. doi: 10.1186/s13223-020-00434-0 PMID: 32467711
  47. Biswas, P.; Dey, D.; Biswas, P.K.; Rahaman, T.I.; Saha, S.; Parvez, A.; Khan, D.A.; Lily, N.J.; Saha, K.; Sohel, M.; Hasan, M.M.; Al Azad, S.; Bibi, S.; Hasan, M.N.; Rahmatullah, M.; Chun, J.; Rahman, M.A.; Kim, B. A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int. J. Mol. Sci., 2022, 23(19), 11746. doi: 10.3390/ijms231911746 PMID: 36233051
  48. Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901. doi: 10.3390/molecules27092901 PMID: 35566252
  49. Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Li, X.; Huang, G.; Xu, A. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem., 2020, 84, 108454. doi: 10.1016/j.jnutbio.2020.108454 PMID: 32679549
  50. Tang, M.; Zeng, Y.; Peng, W.; Xie, X.; Yang, Y.; Ji, B.; Li, F. Pharmacological aspects of natural quercetin in rheumatoid arthritis. Drug Des. Devel. Ther., 2022, 16, 2043-2053. doi: 10.2147/DDDT.S364759 PMID: 35791403
  51. Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108. doi: 10.1016/S0140-6736(10)60826-4 PMID: 20870100
  52. Lee, D.M.; Weinblatt, M.E. Rheumatoid arthritis. Lancet, 2001, 358(9285), 903-911. doi: 10.1016/S0140-6736(01)06075-5 PMID: 11567728
  53. Fearon, U.; Canavan, M.; Biniecka, M.; Veale, D.J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol., 2016, 12(7), 385-397. doi: 10.1038/nrrheum.2016.69 PMID: 27225300
  54. Sabi, E.M.; Singh, A.; Althafar, Z.M.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Alqahtani, H.M.; Bungau, S. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology, 2022, 30(3), 737-748. doi: 10.1007/s10787-022-00974-4 PMID: 35364736
  55. Huang, Z.; Shi, X.; Li, X.; Zhang, L.; Wu, P.; Mao, J.; Xing, R.; Zhang, N.; Wang, P. Network pharmacology approach to uncover the mechanism governing the effect of simiao powder on knee osteoarthritis. BioMed Res. Int., 2020, 2020, 1-13. doi: 10.1155/2020/6971503 PMID: 33376732
  56. de Groot, L.; Hinkema, H.; Westra, J.; Smit, A.J.; Kallenberg, C.G.M.; Bijl, M.; Posthumus, M.D. Advanced glycation endproducts are increased in rheumatoid arthritis patients with controlled disease. Arthritis Res. Ther., 2011, 13(6), R205. doi: 10.1186/ar3538 PMID: 22168993
  57. Rasheed, Z.; Haqqi, T.M. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human chondrocytes. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(12), 2179-2189. doi: 10.1016/j.bbamcr.2012.08.021 PMID: 22982228
  58. Roman-Blas, J.A.; Jimenez, S.A. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage, 2006, 14(9), 839-848. doi: 10.1016/j.joca.2006.04.008 PMID: 16730463
  59. Ohbayashi, H. Matrix metalloproteinases in lung diseases. Curr. Protein Pept. Sci., 2002, 3(4), 409-421. doi: 10.2174/1389203023380549 PMID: 12370004
  60. Tsai, C.L.; Chen, W.C.; Hsieh, H.L.; Chi, P.L.; Hsiao, L.D.; Yang, C.M. TNF-α induces matrix metalloproteinase-9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-κB activation in osteoblast-like MC3T3-E1 cells. J. Biomed. Sci., 2014, 21(1), 12. doi: 10.1186/1423-0127-21-12 PMID: 24502696
  61. Mohammed, F.F.; Smookler, S.S.; Khokha, R. Metalloproteinases, inflammation, and rheumatoid arthritis. Ann. Rheum. Dis., 2003, 62(S2), 43-47. doi: 10.1136/ard.62.suppl_2.ii43
  62. Hu, L.; Liu, R.; Zhang, L. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors. Int. Immunopharmacol., 2022, 111, 109095. doi: 10.1016/j.intimp.2022.109095 PMID: 35926270
  63. Chabaud, M.; Garnero, P.; Dayer, J.M.; Guerne, P.A.; Fossiez, F.; Miossec, P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine, 2000, 12(7), 1092-1099. doi: 10.1006/cyto.2000.0681 PMID: 10880256
  64. Park, E.; Lee, C.G.; Han, S.J.; Yun, S.H.; Hwang, S.; Jeon, H.; Kim, J.; Choi, C.W.; Yang, S.; Jeong, S.Y. Antiosteoarthritic effect of morroniside in chondrocyte inflammation and destabilization of medial meniscus-induced mouse model. Int. J. Mol. Sci., 2021, 22(6), 2987. doi: 10.3390/ijms22062987 PMID: 33804203
  65. Kucharzewska, P.; Maracle, C.X.; Jeucken, K.C.M.; van Hamburg, J.P.; Israelsson, E.; Furber, M.; Tas, S.W.; Olsson, H.K. NIK–IKK complex interaction controls NF-κB-dependent inflammatory activation of endothelium in response to LTβR ligation. J. Cell Sci., 2019, 132(7), jcs.225615. doi: 10.1242/jcs.225615 PMID: 30837284
  66. Yao, Z.; Getting, S.J.; Locke, I.C. Regulation of TNF-induced osteoclast differentiation. Cells, 2021, 11(1), 132. doi: 10.3390/cells11010132 PMID: 35011694
  67. Xia, Y.; Inoue, K.; Du, Y.; Baker, S.J.; Reddy, E.P.; Greenblatt, M.B.; Zhao, B. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat. Commun., 2022, 13(1), 3920. doi: 10.1038/s41467-022-31475-1 PMID: 35798734
  68. Tsuchiya, Y.; Nakabayashi, O.; Nakano, H. FLIP the switch: Regulation of apoptosis and necroptosis by cFLIP. Int. J. Mol. Sci., 2015, 16(12), 30321-30341. doi: 10.3390/ijms161226232 PMID: 26694384
  69. Fujita, M.; Hiroshi, O.; Ikemage, S.; Harada, E.; Matsumoto, T.; Uchino, J.; Nakanishi, Y.; Watanabe, K. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 1705-1712. doi: 10.2147/COPD.S108919 PMID: 27555760
  70. Zhai, Z.; Yang, F.; Xu, W.; Han, J.; Luo, G.; Li, Y.; Zhuang, J.; Jie, H.; Li, X.; Shi, X.; Han, X.; Luo, X.; Song, R.; Chen, Y.; Liang, J.; Wu, S.; He, Y.; Sun, E. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-induced caspase 3/gasdermin E–mediated pyroptosis. Arthritis Rheumatol., 2022, 74(3), 427-440. doi: 10.1002/art.41963 PMID: 34480835
  71. Aggarwal, S.; Gollapudi, S.; Gupta, S. Increased TNF-α-induced apoptosis in lymphocytes from aged humans: changes in TNF-α receptor expression and activation of caspases. J. Immunol., 1999, 162(4), 2154-2161. doi: 10.4049/jimmunol.162.4.2154 PMID: 9973490
  72. Qian, Q.; Cao, X.; Wang, B.; Qu, Y.; Qian, Q.; Sun, Z.; Feng, F. Retracted: TNF‐α–TNFR signal pathway inhibits autophagy and promotes apoptosis of alveolar macrophages in coal worker’s pneumoconiosis. J. Cell. Physiol., 2019, 234(5), 5953-5963. doi: 10.1002/jcp.27061 PMID: 30467847
  73. Hannemann, N.; Jordan, J.; Paul, S.; Reid, S.; Baenkler, H.W.; Sonnewald, S.; Bäuerle, T.; Vera, J.; Schett, G.; Bozec, A. The AP-1 transcription factor c-Jun promotes arthritis by regulating cyclooxygenase-2 and arginase-1 expression in macrophages. J. Immunol., 2017, 198(9), 3605-3614. doi: 10.4049/jimmunol.1601330 PMID: 28298526
  74. Sundarrajan, M.; Boyle, D.L.; Chabaud-Riou, M.; Hammaker, D.; Firestein, G.S. Expression of the MAPK kinases MKK‐4 and MKK‐7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum., 2003, 48(9), 2450-2460. doi: 10.1002/art.11228 PMID: 13130464

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers