Andrographolide Attenuates RSV-induced Inflammation by Suppressing Apoptosis and Promoting Pyroptosis after Respiratory Syncytial Virus Infection In Vitro

  • Authors: Che S.1, Xie X.2, Lin J.3, Liu Y.4, Xie J.1, Liu E.2
  • Affiliations:
    1. Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics
    2. Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,
    3. Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University
    4. State Key Laboratory of Innovative Natural Medicine and TCM Injections,, Jiangxi Qingfeng Pharmaceutical co. LTD,
  • Issue: Vol 27, No 12 (2024)
  • Pages: 1776-1787
  • Section: Chemistry
  • URL: https://vietnamjournal.ru/1386-2073/article/view/643967
  • DOI: https://doi.org/10.2174/0113862073256465231024075452
  • ID: 643967

Cite item

Full Text

Abstract

Background::Respiratory syncytial virus (RSV), which is the predominant viral pathogen responsible for causing acute lower respiratory tract infections in children, currently lacks specific therapeutic drugs. Despite andrographolide's demonstrated effectiveness against various viral infections, its effects on RSV infection remain unclear.

Methods::In this study, RSV infection and andrographolide-intervened A549 cell lines were used. The virus load of RSV and the levels of IL-6 and IL-8 in the cell supernatant were quantified. The potential targets of andrographolide in the treatment of RSV-infected airway epithelial cells were analyzed using the Gene Expression Omnibus (GEO) database and the PharmMapper Database, and the changes in mRNA expression of these target genes were measured. To further illustrate the effect of andrographolide on the death pattern of RSV-infected airway epithelial cells, Annexin V-FITC/PI apoptosis assays and Western blotting were conducted.

Results::Andrographolide decreased the viral load and attenuated IL-6 and IL-8 levels in cell supernatant post-RSV infection. A total of 25 potential targets of andrographolide in the treatment of RSV-infected airway epithelial cells were discovered, and CASP1, CCL5, JAK2, and STAT1 were identified as significant players. Andrographolide noticeably suppressed the increased mRNA expressions of these genes post-RSV infection as well as IL-1β. The flow cytometry analysis demonstrated that andrographolide alleviated apoptosis in RSV-infected cells. Additionally, RSV infection decreased the protein levels of caspase-1, cleaved caspase-1, cleaved IL-1β, N-terminal of GSDMD, and Bcl-2. Conversely, andrographolide increased their levels.

Conclusion::These results suggest that andrographolide may reduce RSV-induced inflammation by suppressing apoptosis and promoting pyroptosis in epithelial cells, leading to effective viral clearance.

About the authors

Siyi Che

Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics

Email: info@benthamscience.net

Xiaohong Xie

Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,

Email: info@benthamscience.net

Jilei Lin

Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University

Email: info@benthamscience.net

Ying Liu

State Key Laboratory of Innovative Natural Medicine and TCM Injections,, Jiangxi Qingfeng Pharmaceutical co. LTD,

Email: info@benthamscience.net

Jun Xie

Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics

Author for correspondence.
Email: info@benthamscience.net

Enmei Liu

Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; Alassani, I.; Ali, A.; Antonio, M.; Awasthi, S.; Awori, J.O.; Azziz-Baumgartner, E.; Baggett, H.C.; Baillie, V.L.; Balmaseda, A.; Barahona, A.; Basnet, S.; Bassat, Q.; Basualdo, W.; Bigogo, G.; Bont, L.; Breiman, R.F.; Brooks, W.A.; Broor, S.; Bruce, N.; Bruden, D.; Buchy, P.; Campbell, S.; Carosone-Link, P.; Chadha, M.; Chipeta, J.; Chou, M.; Clara, W.; Cohen, C.; de Cuellar, E.; Dang, D.A.; Dash-yandag, B.; Deloria-Knoll, M.; Dherani, M.; Eap, T.; Ebruke, B.E.; Echavarria, M.; de Freitas Lázaro Emediato, C.C.; Fasce, R.A.; Feikin, D.R.; Feng, L.; Gentile, A.; Gordon, A.; Goswami, D.; Goyet, S.; Groome, M.; Halasa, N.; Hirve, S.; Homaira, N.; Howie, S.R.C.; Jara, J.; Jroundi, I.; Kartasasmita, C.B.; Khuri-Bulos, N.; Kotloff, K.L.; Krishnan, A.; Libster, R.; Lopez, O.; Lucero, M.G.; Lucion, F.; Lupisan, S.P.; Marcone, D.N.; McCracken, J.P.; Mejia, M.; Moisi, J.C.; Montgomery, J.M.; Moore, D.P.; Moraleda, C.; Moyes, J.; Munywoki, P.; Mutyara, K.; Nicol, M.P.; Nokes, D.J.; Nymadawa, P.; da Costa Oliveira, M.T.; Oshitani, H.; Pandey, N.; Paranhos-Baccalà, G.; Phillips, L.N.; Picot, V.S.; Rahman, M.; Rakoto-Andrianarivelo, M.; Rasmussen, Z.A.; Rath, B.A.; Robinson, A.; Romero, C.; Russomando, G.; Salimi, V.; Sawatwong, P.; Scheltema, N.; Schweiger, B.; Scott, J.A.G.; Seidenberg, P.; Shen, K.; Singleton, R.; Sotomayor, V.; Strand, T.A.; Sutanto, A.; Sylla, M.; Tapia, M.D.; Thamthitiwat, S.; Thomas, E.D.; Tokarz, R.; Turner, C.; Venter, M.; Waicharoen, S.; Wang, J.; Watthanaworawit, W.; Yoshida, L.M.; Yu, H.; Zar, H.J.; Campbell, H.; Nair, H. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet, 2017, 390(10098), 946-958. doi: 10.1016/S0140-6736(17)30938-8 PMID: 28689664
  2. Restori, K.H.; Srinivasa, B.T.; Ward, B.J.; Fixman, E.D. Neonatal immunity, respiratory virus infections, and the development of asthma. Front. Immunol., 2018, 9, 1249. doi: 10.3389/fimmu.2018.01249 PMID: 29915592
  3. Battles, M.B.; McLellan, J.S. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol., 2019, 17(4), 233-245. doi: 10.1038/s41579-019-0149-x PMID: 30723301
  4. Mooney, K.; Melvin, M.; Douglas, T. Ribavirin: The need for exposure precautions. Clin. J. Oncol. Nurs., 2014, 18(5), E93-E96. doi: 10.1188/14.CJON.E93-E96 PMID: 25253120
  5. Xing, Y.; Proesmans, M. New therapies for acute RSV infections: Where are we? Eur. J. Pediatr., 2019, 178(2), 131-138. doi: 10.1007/s00431-018-03310-7 PMID: 30610420
  6. Chakravarti, R.N.; Chakravarti, D. Andrographolide, the active constituent of Andrographis paniculata Nees; a preliminary communication. Ind. Med. Gaz., 1951, 86(3), 96-97. PMID: 14860885
  7. Kumar, S.; Singh, B.; Bajpai, V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J. Ethnopharmacol., 2021, 275, 114054. doi: 10.1016/j.jep.2021.114054 PMID: 33831465
  8. Zhang, H.; Li, S.; Si, Y.; Xu, H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur. J. Med. Chem., 2021, 224, 113710. doi: 10.1016/j.ejmech.2021.113710 PMID: 34315039
  9. Banerjee, S.; Kar, A.; Mukherjee, P.K.; Haldar, P.K.; Sharma, N.; Katiyar, C.K. Immunoprotective potential of Ayurvedic herb Kalmegh (ANDROGRAPHIS PANICULATA) against respiratory viral infections – LC–MS/MS and network pharmacology analysis. Phytochem. Anal., 2021, 32(4), 629-639. doi: 10.1002/pca.3011 PMID: 33167083
  10. Wang, D.W.; Xiang, Y.J.; Wei, Z.L.; Yao, H.; Shen, T. Andrographolide and its derivatives are effective compounds for gastrointestinal protection: a review. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2367-2382. PMID: 33755974
  11. Elasoru, S.E.; Rhana, P.; de Oliveira Barreto, T.; Naves de Souza, D.L.; Menezes-Filho, J.E.R.; Souza, D.S.; Loes Moreira, M.V.; Gomes Campos, M.T.; Adedosu, O.T.; Roman-Campos, D.; Melo, M.M.; Cruz, J.S. Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca2+ and increase of cardiac transient outward K+ currents. Eur. J. Pharmacol., 2021, 906, 174194. doi: 10.1016/j.ejphar.2021.174194 PMID: 34044012
  12. Chao, W.W.; Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med., 2010, 5(1), 17. doi: 10.1186/1749-8546-5-17 PMID: 20465823
  13. Sareer, O.; Ahmad, S.; Umar, S. Andrographis paniculata: A critical appraisal of extraction, isolation and quantification of andrographolide and other active constituents. Nat. Prod. Res., 2014, 28(23), 2081-2101. doi: 10.1080/14786419.2014.924004 PMID: 24912126
  14. Li, B.H.; Li, Z.Y.; Liu, M.M.; Tian, J.Z.; Cui, Q.H. Progress in traditional chinese medicine against respiratory viruses: A review. Front. Pharmacol., 2021, 12, 743623. doi: 10.3389/fphar.2021.743623 PMID: 34531754
  15. Ding, Y.; Chen, L.; Wu, W.; Yang, J.; Yang, Z.; Liu, S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect., 2017, 19(12), 605-615. doi: 10.1016/j.micinf.2017.08.009 PMID: 28889969
  16. Li, F.; Lee, E.M.; Sun, X.; Wang, D.; Tang, H.; Zhou, G.C. Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. Eur. J. Med. Chem., 2020, 187, 111925. doi: 10.1016/j.ejmech.2019.111925 PMID: 31838328
  17. Srikanth, L.; Sarma, P.V.G.K. Andrographolide binds to spike glycoprotein and RNA-dependent RNA polymerase (NSP12) of SARS-CoV-2 by in silico approach: A probable molecule in the development of anti-coronaviral drug. J. Genet. Eng. Biotechnol., 2021, 19(1), 101. doi: 10.1186/s43141-021-00201-7 PMID: 34255214
  18. Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690. doi: 10.1038/nchembio.118 PMID: 18936753
  19. Gias, E.; Nielsen, S.U.; Morgan, L.A.F.; Toms, G.L. Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J. Virol. Methods, 2008, 147(2), 328-332. doi: 10.1016/j.jviromet.2007.09.013 PMID: 18029032
  20. McKimm-Breschkin, J.L. A simplified plaque assay for respiratory syncytial virus—direct visualization of plaques without immunostaining. J. Virol. Methods, 2004, 120(1), 113-117. doi: 10.1016/j.jviromet.2004.02.020 PMID: 15234816
  21. Deng, Y.; Chen, W.; Zang, N.; Li, S.; Luo, Y.; Ni, K.; Wang, L.; Xie, X.; Liu, W.; Yang, X.; Fu, Z.; Liu, E. The antiasthma effect of neonatal BCG vaccination does not depend on the Th17/Th1 but IL-17/IFN-γ balance in a BALB/c mouse asthma model. J. Clin. Immunol., 2011, 31(3), 419-429. doi: 10.1007/s10875-010-9503-5 PMID: 21340706
  22. Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360. doi: 10.1093/nar/gkx374 PMID: 28472422
  23. Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutellingsperger, C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51. doi: 10.1016/0022-1759(95)00072-I PMID: 7622868
  24. Paolini, A.; Borella, R.; De Biasi, S.; Neroni, A.; Mattioli, M.; Lo Tartaro, D.; Simonini, C.; Franceschini, L.; Cicco, G.; Piparo, A.M.; Cossarizza, A.; Gibellini, L. Cell death in coronavirus infections: Uncovering its role during COVID-19. Cells, 2021, 10(7), 1585. doi: 10.3390/cells10071585 PMID: 34201847
  25. Imre, G. Cell death signalling in virus infection. Cell. Signal., 2020, 76, 109772. doi: 10.1016/j.cellsig.2020.109772 PMID: 32931899
  26. Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254. doi: 10.1016/j.tibs.2016.10.004 PMID: 27932073
  27. He, Y.; Hara, H.; Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci., 2016, 41(12), 1012-1021. doi: 10.1016/j.tibs.2016.09.002 PMID: 27669650
  28. Shen, C.; Zhang, Z.; Xie, T.; Ji, J.; Xu, J.; Lin, L.; Yan, J.; Kang, A.; Dai, Q.; Dong, Y.; Shan, J.; Wang, S.; Zhao, X. Rhein suppresses lung inflammatory injury induced by human respiratory syncytial virus through inhibiting NLRP3 inflammasome activation via NF-κB pathway in mice. Front. Pharmacol., 2020, 10, 1600. doi: 10.3389/fphar.2019.01600 PMID: 32047436
  29. Malinczak, C.A.; Schuler, C.F.; Duran, A.J.; Rasky, A.J.; Mire, M.M.; Núñez, G.; Lukacs, N.W.; Fonseca, W. NLRP3-inflammasome inhibition during respiratory virus infection abrogates lung immunopathology and long-term airway disease development. Viruses, 2021, 13(4), 692. doi: 10.3390/v13040692 PMID: 33923693
  30. Latif, R.; Wang, C.Y. Andrographolide as a potent and promising antiviral agent. Chin. J. Nat. Med., 2020, 18(10), 760-769. doi: 10.1016/S1875-5364(20)60016-4 PMID: 33039055
  31. Yu, B.; Dai, C.; Jiang, Z.; Li, E.; Chen, C.; Wu, X.; Chen, J.; Liu, Q.; Zhao, C.; He, J.; Ju, D.; Chen, X. Andrographolide as an Anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway. Chin. J. Integr. Med., 2014, 20(7), 540-545. doi: 10.1007/s11655-014-1860-0 PMID: 24972581
  32. Wang, D.; Guo, H.; Chang, J.; Wang, D.; Liu, B.; Gao, P.; Wei, W. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front. Microbiol., 2018, 9, 2407. doi: 10.3389/fmicb.2018.02407 PMID: 30349523
  33. Thomas, K.W.; Monick, M.M.; Staber, J.M.; Yarovinsky, T.; Carter, A.B.; Hunninghake, G.W. Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem., 2002, 277(1), 492-501. doi: 10.1074/jbc.M108107200 PMID: 11687577
  34. Eckardt-Michel, J.; Lorek, M.; Baxmann, D.; Grunwald, T.; Keil, G.M.; Zimmer, G. The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J. Virol., 2008, 82(7), 3236-3249. doi: 10.1128/JVI.01887-07 PMID: 18216092
  35. Eisenhut, M. Extrapulmonary manifestations of severe respiratory syncytial virus infection--a systematic review. Crit. Care, 2006, 10(4), R107. doi: 10.1186/cc4984 PMID: 16859512
  36. Miao, E.A.; Rajan, J.V.; Aderem, A. Caspase‐1‐induced pyroptotic cell death. Immunol. Rev., 2011, 243(1), 206-214. doi: 10.1111/j.1600-065X.2011.01044.x PMID: 21884178
  37. Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol., 2010, 11(12), 1136-1142. doi: 10.1038/ni.1960 PMID: 21057511
  38. Maltez, V.I.; Tubbs, A.L.; Cook, K.D.; Aachoui, Y.; Falcone, E.L.; Holland, S.M.; Whitmire, J.K.; Miao, E.A. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity, 2015, 43(5), 987-997. doi: 10.1016/j.immuni.2015.10.010 PMID: 26572063
  39. Li, Z.; Liu, W.; Fu, J.; Cheng, S.; Xu, Y.; Wang, Z.; Liu, X.; Shi, X.; Liu, Y.; Qi, X.; Liu, X.; Ding, J.; Shao, F. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature, 2021, 599(7884), 290-295. doi: 10.1038/s41586-021-04020-1 PMID: 34671164
  40. Xiang, Z.; Liang, Z.; Yanfeng, H.; Leitao, K. Persistence of RSV promotes proliferation and epithelial-mesenchymal transition of bronchial epithelial cells through Nodal signaling. J. Med. Microbiol., 2017, 66(10), 1499-1505. doi: 10.1099/jmm.0.000581 PMID: 28901900
  41. Lindemans, C.A.; Coffer, P.J.; Schellens, I.M.M.; de Graaff, P.M.A.; Kimpen, J.L.L.; Koenderman, L. Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-kappaB-dependent mechanism. J. Immunol., 2006, 176(9), 5529-5537. doi: 10.4049/jimmunol.176.9.5529 PMID: 16622022
  42. Nakamura-López, Y.; Villegas-Sepúlveda, N.; Sarmiento-Silva, R.E.; Gómez, B. Intrinsic apoptotic pathway is subverted in mouse macrophages persistently infected by RSV. Virus Res., 2011, 158(1-2), 98-107. doi: 10.1016/j.virusres.2011.03.016 PMID: 21440589
  43. Chen, J.H.; Hsiao, G.; Lee, A.R.; Wu, C.C.; Yen, M.H. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway. Biochem. Pharmacol., 2004, 67(7), 1337-1345. doi: 10.1016/j.bcp.2003.12.015 PMID: 15013849
  44. Liu, W.; Liang, L.; Zhang, Q.; Li, Y.; Yan, S.; Tang, T.; Ren, Y.; Mo, J.; Liu, F.; Chen, X.; Lan, T. Effects of andrographolide on renal tubulointersticial injury and fibrosis. Evidence of its mechanism of action. Phytomedicine, 2021, 91, 153650. doi: 10.1016/j.phymed.2021.153650 PMID: 34332282
  45. Lin, K.H.; Marthandam Asokan, S.; Kuo, W.W.; Hsieh, Y.L.; Lii, C.K.; Viswanadha, V.; Lin, Y.L.; Wang, S.; Yang, C.; Huang, C.Y. Andrographolide mitigates cardiac apoptosis to provide cardio‐protection in high‐fat‐diet‐induced obese mice. Environ. Toxicol., 2020, 35(6), 707-713. doi: 10.1002/tox.22906 PMID: 32023008
  46. Li, X.; Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Huang, G.; Xu, A. Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis–netosis balance of neutrophils. Int. J. Mol. Sci., 2019, 20(20), 5035. doi: 10.3390/ijms20205035 PMID: 31614480
  47. Chao, W.W.; Kuo, Y.H.; Lin, B.F. Isolation and identification of andrographis paniculata (chuanxinlian) and its biologically active constituents inhibited enterovirus 71-induced cell apoptosis. Front. Pharmacol., 2021, 12, 762285. doi: 10.3389/fphar.2021.762285 PMID: 34955832
  48. Carty, M.; Guy, C.; Bowie, A.G. Detection of viral infections by innate immunity. Biochem. Pharmacol., 2021, 183, 114316. doi: 10.1016/j.bcp.2020.114316 PMID: 33152343
  49. He, Z.; Chen, J.; Zhu, X.; An, S.; Dong, X.; Yu, J.; Zhang, S.; Wu, Y.; Li, G.; Zhang, Y.; Wu, J.; Li, M. NLRP3 inflammasome activation mediates zika virus–associated inflammation. J. Infect. Dis., 2018, 217(12), 1942-1951. doi: 10.1093/infdis/jiy129 PMID: 29518228
  50. Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; Veras, F.P.; Toller-Kawahisa, J.E.; Nascimento, D.C.; de Lima, M.H.F.; Silva, C.M.S.; Caetite, D.B.; Martins, R.B.; Castro, I.A.; Pontelli, M.C.; de Barros, F.C.; do Amaral, N.B.; Giannini, M.C.; Bonjorno, L.P.; Lopes, M.I.F.; Santana, R.C.; Vilar, F.C.; Auxiliadora-Martins, M.; Luppino-Assad, R.; de Almeida, S.C.L.; de Oliveira, F.R.; Batah, S.S.; Siyuan, L.; Benatti, M.N.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Cunha, L.D.; Frantz, F.G.; Kohlsdorf, T.; Fabro, A.T.; Arruda, E.; de Oliveira, R.D.R.; Louzada-Junior, P.; Zamboni, D.S. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med., 2021, 218(3), e20201707. doi: 10.1084/jem.20201707 PMID: 33231615
  51. Vázquez, Y.; González, L.; Noguera, L.; González, P.A.; Riedel, C.A.; Bertrand, P.; Bueno, S.M. Cytokines in the respiratory airway as biomarkers of severity and prognosis for respiratory syncytial virus infection: An update. Front. Immunol., 2019, 10, 1154. doi: 10.3389/fimmu.2019.01154 PMID: 31214165
  52. Choudhury, S.K.M.; Ma, X.; Abdullah, S.W.; Zheng, H. Activation and inhibition of the NLRP3 inflammasome by RNA viruses. J. Inflamm. Res., 2021, 14, 1145-1163. doi: 10.2147/JIR.S295706 PMID: 33814921
  53. Schuler, C.F., IV; Malinczak, C.A.; Best, S.K.K.; Morris, S.B.; Rasky, A.J.; Ptaschinski, C.; Lukacs, N.W.; Fonseca, W. Inhibition of uric acid or IL‐1β ameliorates respiratory syncytial virus immunopathology and development of asthma. Allergy, 2020, 75(9), 2279-2293. doi: 10.1111/all.14310 PMID: 32277487

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers