Hesperidin Alleviates Acute Necrotizing Pancreatitis by Activating SIRT1 - Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation


Cite item

Full Text

Abstract

Background:Acute necrotizing pancreatitis is a serious pancreatic injury with limited effective treatments. This study aims to investigate the therapeutic effects of hesperidin on Larginine- induced acute pancreatitis and its potential targets.

Methods:The authors induced acute pancreatitis in mice by administering two hourly intraperitoneal injections of L-arginine-HCl, and evaluated the impact of hesperidin on pancreatic and lung tissues, plasma amylase activity, and myeloperoxidase content. Additionally, necrosis and mitochondrial function was tested in primary pancreatic acinar cells. The interactions between hesperidin and proteins involved in necrosis and mitochondrial dysfunction were further invested using in silico molecular docking and molecular dynamic simulations.

Results:Hesperidin effectively ameliorated the severity of acute necrotizing pancreatitis by reducing plasma amylase, pancreatic MPO, serum IL-6 levels, pancreatic edema, inflammation, and pancreatic necrosis. Hesperidin also protected against acute pancreatitis-associated lung injury and prevented acinar cell necrosis, mitochondrial membrane potential loss, and ATP depletion. In addition, hesperidin exhibited a high binding affinity with SIRT1 and increased the protein levels of SIRT1. The SIRT1 inhibitor EX527 abolished the protective effect of hesperidin against necrosis in acinar cells.

Conclusion:These findings indicate that hesperidin alleviates the severity of acute necrotizing pancreatitis by activating SIRT1, which may provide insight into the mechanisms of natural compounds in treating AP. Hesperidin has potential as a therapeutic agent for acute necrotizing pancreatitis and provides a new approach for novel therapeutic strategies.

About the authors

Rui Zhang

Department of Pharmacy, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Junjie Lan

Department of Pharmacy, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Qi Chen

Department of Pharmacy, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Yang Liu

Department of Hepatobiliary Surgery II, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Linfang Hu

Department of Pharmacy, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Jinyong Cao

Department of Endoscopy, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Huaye Zhao

Department of Pharmacy, Guizhou Provincial People’s Hospital

Email: info@benthamscience.net

Yan Shen

School of Pharmacy and Bioengineering, Chongqing University of Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. van Dijk, S.M.; Hallensleben, N.D.L.; van Santvoort, H.C.; Fockens, P.; van Goor, H.; Bruno, M.J.; Besselink, M.G. Acute pancreatitis: Recent advances through randomised trials. Gut, 2017, 66(11), 2024-2032. doi: 10.1136/gutjnl-2016-313595 PMID: 28838972
  2. Petrov, M.S.; Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(3), 175-184. doi: 10.1038/s41575-018-0087-5 PMID: 30482911
  3. Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute pancreatitis: Diagnosis and treatment. Drugs, 2022, 82(12), 1251-1276. doi: 10.1007/s40265-022-01766-4 PMID: 36074322
  4. Garg, P.K.; Singh, V.P. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology, 2019, 156(7), 2008-2023. doi: 10.1053/j.gastro.2018.12.041 PMID: 30768987
  5. Jaber, S.; Garnier, M.; Asehnoune, K.; Bounes, F.; Buscail, L.; Chevaux, J.B.; Dahyot-Fizelier, C.; Darrivere, L.; Jabaudon, M.; Joannes-Boyau, O.; Launey, Y.; Levesque, E.; Levy, P.; Montravers, P.; Muller, L.; Rimmelé, T.; Roger, C.; Savoye-Collet, C.; Seguin, P.; Tasu, J.P.; Thibault, R.; Vanbiervliet, G.; Weiss, E.; De Jong, A. Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth. Crit. Care Pain Med., 2022, 41(3), 101060. doi: 10.1016/j.accpm.2022.101060 PMID: 35636304
  6. Lee, P.J.; Papachristou, G.I. New insights into acute pancreatitis. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 479-496. doi: 10.1038/s41575-019-0158-2 PMID: 31138897
  7. Maléth, J.; Hegyi, P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1700), 20150425. doi: 10.1098/rstb.2015.0425 PMID: 27377719
  8. Biczo, G.; Vegh, E.T.; Shalbueva, N.; Mareninova, O.A.; Elperin, J.; Lotshaw, E.; Gretler, S.; Lugea, A.; Malla, S.R.; Dawson, D.; Ruchala, P.; Whitelegge, J.; French, S.W.; Wen, L.; Husain, S.Z.; Gorelick, F.S.; Hegyi, P.; Rakonczay, Z., Jr; Gukovsky, I.; Gukovskaya, A.S. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology, 2018, 154(3), 689-703. doi: 10.1053/j.gastro.2017.10.012 PMID: 29074451
  9. Saluja, A.; Dudeja, V.; Dawra, R.; Sah, R.P. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology, 2019, 156(7), 1979-1993. doi: 10.1053/j.gastro.2019.01.268 PMID: 30776339
  10. Mukherjee, R.; Mareninova, O.A.; Odinokova, I.V.; Huang, W.; Murphy, J.; Chvanov, M.; Javed, M.A.; Wen, L.; Booth, D.M.; Cane, M.C.; Awais, M.; Gavillet, B.; Pruss, R.M.; Schaller, S.; Molkentin, J.D.; Tepikin, A.V.; Petersen, O.H.; Pandol, S.J.; Gukovsky, I.; Criddle, D.N.; Gukovskaya, A.S.; Sutton, R. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65(8), 1333-1346. doi: 10.1136/gutjnl-2014-308553 PMID: 26071131
  11. Habtezion, A.; Gukovskaya, A.S.; Pandol, S.J. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology, 2019, 156(7), 1941-1950. doi: 10.1053/j.gastro.2018.11.082 PMID: 30660726
  12. Criddle, D.N.; Gerasimenko, J.V.; Baumgartner, H.K.; Jaffar, M.; Voronina, S.; Sutton, R.; Petersen, O.H.; Gerasimenko, O.V. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ., 2007, 14(7), 1285-1294. doi: 10.1038/sj.cdd.4402150 PMID: 17431416
  13. Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 2013, 38(2), 209-223. doi: 10.1016/j.immuni.2013.02.003 PMID: 23438821
  14. Chen, R.; Kang, R.; Fan, X-G.; Tang, D. Release and activity of histone in diseases. Cell Death Dis., 2014, 5(8), e1370. doi: 10.1038/cddis.2014.337 PMID: 25118930
  15. Sendler, M.; Mayerle, J.; Lerch, M.M. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(4), 407-408. doi: 10.1016/j.jcmgh.2016.05.007 PMID: 28174728
  16. Hoque, R.; Sohail, M.; Malik, A.; Sarwar, S.; Luo, Y.; Shah, A.; Barrat, F.; Flavell, R.; Gorelick, F.; Husain, S.; Mehal, W. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology, 2011, 141(1), 358-369. doi: 10.1053/j.gastro.2011.03.041 PMID: 21439959
  17. Sendler, M.; van den Brandt, C.; Glaubitz, J.; Wilden, A.; Golchert, J.; Weiss, F.U.; Homuth, G.; De Freitas Chama, L.L.; Mishra, N.; Mahajan, U.M.; Bossaller, L.; Völker, U.; Bröker, B.M.; Mayerle, J.; Lerch, M.M. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology, 2020, 158(1), 253-269.e14. doi: 10.1053/j.gastro.2019.09.040 PMID: 31593700
  18. Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112. doi: 10.1038/s41577-019-0215-7 PMID: 31558839
  19. Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García-Lidón, A.; Ortuño, A. Citrus limon: a source of flavonoids of pharmaceutical interest. Food Chem., 2004, 84(3), 457-461. doi: 10.1016/S0308-8146(03)00272-3
  20. Giuffrè, A.M.; Zappia, C.; Capocasale, M. Physicochemical stability of blood orange juice during frozen storage. Int. J. Food Prop., 2017, 20(S2), 1930-1943.
  21. Maria, G.A.; Riccardo, N. Citrus bergamia, Risso: the peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emir. J. Food Agric., 2020, 32(7), 522-532. doi: 10.9755/ejfa.2020.v32.i7.2128
  22. Sharma, P. Ruchika; Dhiman, P.; Kumar, R.; Saneja, A.; Singh, D. A solid dispersion of Citrus reticulata peel biowaste as an effective antiepileptic: Sustainable approach toward value addition and agro-industrial waste valorisation. J. Drug Deliv. Sci. Technol., 2023, 81, 104238. doi: 10.1016/j.jddst.2023.104238
  23. Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A Therapeutic Agent For Obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866. doi: 10.2147/DDDT.S227499 PMID: 32009777
  24. Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 613-631. doi: 10.1080/10408398.2014.906382 PMID: 25675136
  25. Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules, 2019, 24(3), 648. doi: 10.3390/molecules24030648 PMID: 30759833
  26. Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem., 2019, 25(37), 4929-4945. doi: 10.2174/0929867324666170718104412 PMID: 28721824
  27. Wang, S.; He, N.; Xing, H.; Sun, Y.; Ding, J.; Liu, L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J. Recept. Signal Transduct. Res., 2020, 40(4), 388-394. doi: 10.1080/10799893.2020.1738483 PMID: 32164488
  28. Liang, G.; Yang, J.; Liu, T.; Wang, S.; Wen, Y.; Han, C.; Huang, Y.; Wang, R.; Wang, Y.; Hu, L.; Wang, G.; Li, F.; Tyndall, J.D.A.; Deng, L.; Du, D.; Xia, Q. A multi-strategy platform for quality control and Q-markers screen of Chaiqin chengqi decoction. Phytomedicine, 2021, 85, 153525. doi: 10.1016/j.phymed.2021.153525 PMID: 33740732
  29. Aja, P.M.; Izekwe, F.I.; Famurewa, A.C.; Ekpono, E.U.; Nwite, F.E.; Igwenyi, I.O.; Awoke, J.N.; Ani, O.G.; Aloke, C.; Obasi, N.A.; Udeh, K.U.; Ale, B.A. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and iNOS/NF-ĸB signaling in rats. Life Sci., 2020, 259, 118268. doi: 10.1016/j.lfs.2020.118268 PMID: 32800830
  30. Nagashima, S.; Tábara, L.C.; Tilokani, L.; Paupe, V.; Anand, H.; Pogson, J.H.; Zunino, R.; McBride, H.M.; Prudent, J. Golgi-derived PI (4) P-containing vesicles drive late steps of mitochondrial division. Science, 2020, 367(6484), 1366-1371. doi: 10.1126/science.aax6089 PMID: 32193326
  31. Zhang, X.; Jin, T.; Shi, N.; Yao, L.; Yang, X.; Han, C.; Wen, L.; Du, D.; Szatmary, P.; Mukherjee, R.; Liu, T.; Xia, Q.; Criddle, D.N.; Huang, W.; Chvanov, M.; Sutton, R. Mechanisms of Pancreatic Injury Induced by Basic Amino Acids Differ Between L-Arginine, L-Ornithine, and L-Histidine. Front. Physiol., 2019, 9, 1922. doi: 10.3389/fphys.2018.01922 PMID: 30697165
  32. Liu, X.; Lu, J.; Liao, Y.; Liu, S.; Chen, Y.; He, R.; Men, L.; Lu, C.; Chen, Z.; Li, S.; Xiong, G.; Yang, S. Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed. Pharmacother., 2019, 117, 109070. doi: 10.1016/j.biopha.2019.109070 PMID: 31176164
  33. Dawra, R.; Sharif, R.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Saluja, A.K. Development of a new mouse model of acute pancreatitis induced by administration of L -arginine. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(4), G1009-G1018. doi: 10.1152/ajpgi.00167.2006 PMID: 17170029
  34. Shen, Y.; Wen, L.; Zhang, R.; Wei, Z.; Shi, N.; Xiong, Q.; Xia, Q.; Xing, Z.; Zeng, Z.; Niu, H.; Huang, W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br. J. Pharmacol., 2018, 175(10), 1621-1636. doi: 10.1111/bph.14169 PMID: 29457828
  35. Zhang, R.; Wen, L.; Shen, Y.; Shi, N.; Xing, Z.; Xia, Q.; Niu, H.; Huang, W. One compound of saponins from Disocorea zingiberensis protected against experimental acute pancreatitis by preventing mitochondria-mediated necrosis. Sci. Rep., 2016, 6(1), 35965. doi: 10.1038/srep35965 PMID: 27779235
  36. Chen, W.; Shen, Y.; Li, Z.; Zhang, M.; Lu, C.; Shen, Y. Design and synthesis of 2-phenylnaphthalenoids as inhibitors of DNA topoisomeraseIIα and antitumor agents. Eur. J. Med. Chem., 2014, 86, 782-796. doi: 10.1016/j.ejmech.2014.08.073 PMID: 25240702
  37. Wang, Y.; Sternfeld, L.; Yang, F.; Rodriguez, J.A.; Ross, C.; Hayden, M.R.; Carriere, F.; Liu, G.; Hofer, W.; Schulz, I. Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells. Gut, 2009, 58(3), 422-430. doi: 10.1136/gut.2007.146258 PMID: 18936103
  38. Xiao, J.; Feng, X.; Huang, X.Y.; Huang, Z.; Huang, Y.; Li, C.; Li, G.; Nong, S.; Wu, R.; Huang, Y.; Long, X.D. Spautin-1 Ameliorates Acute Pancreatitis via inhibiting impaired Autophagy and Alleviating Calcium Overload. Mol. Med., 2016, 22(1), 643-652. doi: 10.2119/molmed.2016.00034 PMID: 27579473
  39. Duan, H.; Zhang, R.; Yuan, L.; Liu, Y.; Asikaer, A.; Liu, Y.; Shen, Y. Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation. RSC Advances, 2023, 13(20), 13971-13984. doi: 10.1039/D3RA01761C PMID: 37181515
  40. He, Q.; Zhao, L.; Li, G.; Shen, Y.; Hu, Y.; Wang, Y. The antimicrobial cyclic peptide B2 combats multidrug resistant Acinetobacter baumannii infection. New J. Chem., 2022, 46(14), 6577-6586. doi: 10.1039/D1NJ05353A
  41. Li, L.; Peng, C.; Wang, Y.; Xiong, C.; Liu, Y.; Wu, C.; Wang, J. Identify promising IKK-β inhibitors: A docking-based 3D-QSAR study combining molecular design and molecular dynamics simulation. Arab. J. Chem., 2022, 15(5), 103786. doi: 10.1016/j.arabjc.2022.103786
  42. Fu, L.; Chen, Y.; Guo, H.; Xu, L.; Tan, M.; Dong, Y.; Shu, M.; Wang, R.; Lin, Z. A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation. Struct. Chem., 2021, 32(2), 819-834. doi: 10.1007/s11224-020-01668-9
  43. Singh, V.K.; Yadav, D.; Garg, P.K. Diagnosis and management of chronic pancreatitis: a review. JAMA, 2019, 322(24), 2422-2434. doi: 10.1001/jama.2019.19411 PMID: 31860051
  44. Rakonczay, Z., Jr; Hegyi, P.; Dósa, S.; Iványi, B.; Jármay, K.; Biczó, G.; Hracskó, Z.; Varga, I.S.; Karg, E.; Kaszaki, J.; Varró, A.; Lonovics, J.; Boros, I.; Gukovsky, I.; Gukovskaya, A.S.; Pandol, S.J.; Takács, T. A new severe acute necrotizing pancreatitis model induced by l-ornithine in rats. Crit. Care Med., 2008, 36(7), 2117-2127. doi: 10.1097/CCM.0b013e31817d7f5c PMID: 18594222
  45. Granger, J.; Remick, D. Acute pancreatitis: models, markers, and mediators. Shock, 2005, 24(Suppl. 1), 45-51. doi: 10.1097/01.shk.0000191413.94461.b0 PMID: 16374372
  46. Khan, G.M.; Li, J.J.; Tenner, S. Association of extent and infection of pancreatic necrosis with organ failure and death in acute necrotizing pancreatitis. Clin. Gastroenterol. Hepatol., 2005, 3(8), 829. doi: 10.1016/S1542-3565(05)00485-4 PMID: 16234014
  47. Johnson, C.D.; Abu-Hilal, M. Persistent organ failure during the first week as a marker of fatal outcome in acute pancreatitis. Gut, 2004, 53(9), 1340-1344. doi: 10.1136/gut.2004.039883 PMID: 15306596
  48. Mofidi, R.; Duff, M.D.; Wigmore, S.J.; Madhavan, K.K.; Garden, O.J.; Parks, R.W. Association between early systemic inflammatory response, severity of multiorgan dysfunction and death in acute pancreatitis. Br. J. Surg., 2006, 93(6), 738-744. doi: 10.1002/bjs.5290 PMID: 16671062
  49. Nassar, T.I.; Qunibi, W.Y. AKI Associated with Acute Pancreatitis. Clin. J. Am. Soc. Nephrol., 2019, 14(7), 1106-1115. doi: 10.2215/CJN.13191118 PMID: 31118209
  50. Holodinsky, J.K.; Roberts, D.J.; Ball, C.G.; Blaser, A.; Starkopf, J.; Zygun, D.A.; Stelfox, H.; Malbrain, M.L.; Jaeschke, R.C.; Kirkpatrick, A.W. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit. Care, 2013, 17(5), R249. doi: 10.1186/cc13075 PMID: 24144138
  51. Song, A.M.; Bhagat, L.; Singh, V.P.; Van Acker, G.G.D.; Steer, M.L.; Saluja, A.K. Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(5), G1166-G1174. doi: 10.1152/ajpgi.00370.2001 PMID: 12381531
  52. Hofbauer, B.; Saluja, A.; Bhatia, M.; Frossard, J.; Lee, H.; Bhagat, L.; Steer, M. Effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis. Gastroenterology, 1998, 115(5), 1238-1247. doi: 10.1016/S0016-5085(98)70096-4 PMID: 9797380
  53. Bhatia, M.; Saluja, A.K.; Hofbauer, B.; Lee, H.S.; Frossard, J.L.; Steer, M.L. The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int. J. Pancreatol., 1998, 24(2), 77-83. doi: 10.1007/BF02788564 PMID: 9816540
  54. Párniczky, A.; Kui, B.; Szentesi, A.; Balázs, A.; Szűcs, Á.; Mosztbacher, D.; Czimmer, J.; Sarlós, P.; Bajor, J.; Gódi, S.; Vincze, Á.; Illés, A.; Szabó, I.; Pár, G.; Takács, T.; Czakó, L.; Szepes, Z.; Rakonczay, Z.; Izbéki, F.; Gervain, J.; Halász, A.; Novák, J.; Crai, S.; Hritz, I.; Góg, C.; Sümegi, J.; Golovics, P.; Varga, M.; Bod, B.; Hamvas, J.; Varga-Müller, M.; Papp, Z.; Sahin-Tóth, M.; Hegyi, P. Prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis. PLoS One, 2016, 11(10), e0165309. doi: 10.1371/journal.pone.0165309 PMID: 27798670
  55. Sathyanarayan, G.; Garg, P.K.; Prasad, H.K.; Tandon, R.K. Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis. J. Gastroenterol. Hepatol., 2007, 22(4), 550-554. doi: 10.1111/j.1440-1746.2006.04752.x PMID: 17376050
  56. Ismail, O.Z.; Bhayana, V. Lipase or amylase for the diagnosis of acute pancreatitis? Clin. Biochem., 2017, 50(18), 1275-1280. doi: 10.1016/j.clinbiochem.2017.07.003 PMID: 28720341
  57. Pyrzynska, K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients, 2022, 14(12), 2387. doi: 10.3390/nu14122387 PMID: 35745117
  58. du Preez, B.V.P.; de Beer, D.; Joubert, E. By-product of honeybush (Cyclopia maculata) tea processing as source of hesperidin-enriched nutraceutical extract. Ind. Crops Prod., 2016, 87, 132-141. doi: 10.1016/j.indcrop.2016.04.012
  59. Chen, G.; Zhang, L.; Zhao, J.; Ye, J. Determination of hesperidin and synephrine in Pericarpium Citri Reticulatae by capillary electrophoresis with electrochemical detection. Anal. Bioanal. Chem., 2002, 373(3), 169-173. doi: 10.1007/s00216-002-1300-4 PMID: 12043020
  60. Köksoy, F.N.; Yankol, Y.; Oran, E.S.E.N.; Őzkan Gūrdal, S.; Yūksel, M.; Akyildiz Iğdem, A.; Yildirim Yazgan, N.; Soybir, G.R. Preventive effects of enoxaparin and hesperidin in cerulein-induced acute pancreatitis in rats. Turk. J. Gastroenterol., 2013, 24(6), 495-501. doi: 10.4318/tjg.2013.0585 PMID: 24623288
  61. Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M.J. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2011, 96(5), E782-E792. doi: 10.1210/jc.2010-2879 PMID: 21346065
  62. Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195. doi: 10.1074/jbc.M501250200 PMID: 15749705
  63. Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B.; Bemis, J.E.; Xie, R.; Disch, J.S.; Ng, P.Y.; Nunes, J.J.; Lynch, A.V.; Yang, H.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D.A.; Olefsky, J.M.; Jirousek, M.R.; Elliott, P.J.; Westphal, C.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450(7170), 712-716. doi: 10.1038/nature06261 PMID: 18046409
  64. Tang, B.L. Sirt1's systemic protective roles and its promise as a target in antiaging medicine. Transl. Res., 2011, 157(5), 276-284. doi: 10.1016/j.trsl.2010.11.006 PMID: 21497775
  65. Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 679-690. doi: 10.1038/nrm.2016.93 PMID: 27552971
  66. Liu, Y.; Sun, Y.; Xue, B.H.; Wang, X.D.; Yu, W.L. Negative Regulation of SIRT1 by IRF9 Involved in Hyperlipidemia Acute Pancreatitis Associated with Kidney Injury. Dig. Dis. Sci., 2021, 66(4), 1063-1071. doi: 10.1007/s10620-020-06331-1 PMID: 32462510
  67. Bansod, S.; Godugu, C. Nimbolide ameliorates pancreatic inflammation and apoptosis by modulating NF-κB/SIRT1 and apoptosis signaling in acute pancreatitis model. Int. Immunopharmacol., 2021, 90, 107246. doi: 10.1016/j.intimp.2020.107246 PMID: 33310297
  68. Wang, N.; Zhang, F.; Yang, L.; Zou, J.; Wang, H.; Liu, K.; Liu, M.; Zhang, H.; Xiao, X.; Wang, K. Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int. J. Mol. Med., 2017, 40(2), 427-437. doi: 10.3892/ijmm.2017.3012 PMID: 28586010
  69. Rong, Y.; Ren, J.; Song, W.; Xiang, R.; Ge, Y.; Lu, W.; Fu, T. Resveratrol Suppresses Severe Acute Pancreatitis-Induced Microcirculation Disturbance through Targeting SIRT1-FOXO1 Axis. Oxid. Med. Cell. Longev., 2021, 2021, 1-8. doi: 10.1155/2021/8891544 PMID: 33628394
  70. Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells, 2016, 39(2), 87-95. doi: 10.14348/molcells.2016.2318 PMID: 26831453
  71. Aquilano, K.; Baldelli, S.; Pagliei, B.; Cannata, S.M.; Rotilio, G.; Ciriolo, M.R. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid. Redox Signal., 2013, 18(4), 386-399. doi: 10.1089/ars.2012.4615 PMID: 22861165
  72. Beyfuss, K.; Hood, D.A. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep., 2018, 23(1), 100-117. doi: 10.1080/13510002.2017.1416773 PMID: 29298131
  73. Daitoku, H.; Hatta, M.; Matsuzaki, H.; Aratani, S.; Ohshima, T.; Miyagishi, M.; Nakajima, T.; Fukamizu, A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10042-10047. doi: 10.1073/pnas.0400593101 PMID: 15220471
  74. Famurewa, A.C.; Renu, K.; Eladl, M.A.; Chakraborty, R.; Myakala, H.; El-Sherbiny, M.; Elsherbini, D.M.A.; Vellingiri, B.; Madhyastha, H.; Ramesh Wanjari, U.; Goutam Mukherjee, A.; Valsala Gopalakrishnan, A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed. Pharmacother., 2022, 149, 112914. doi: 10.1016/j.biopha.2022.112914 PMID: 36068775

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers