A Comprehensive Review on Biotransformation, Interaction, and Health of Gut Microbiota and Bioactive Components


Cite item

Full Text

Abstract

Background::The relationship between gut microbiota and bioactive components has become the research focus in the world. We attempted to clarify the relationship between biotransformation and metabolites of gut microbiota and bioactive components, and explore the metabolic pathway and mechanism of bioactive ingredients in vivo, which will provide an important theoretical basis for the clinical research of bioactive ingredients and rationality of drugs, and also provide an important reference for the development of new drugs with high bioavailability.

Methods::The related references of this review on microbiota and bioactive components were collected from both online and offline databases, such as ScienceDirect, PubMed, Elsevier, Willy, SciFinder, Google Scholar, Web of Science, Baidu Scholar, SciHub, Scopus, and CNKI.

Results::This review summarized the biotransformation of bioactive components under the action of gut microbiota, including flavonoids, terpenoids, phenylpropanoids, alkaloids, steroids, and other compounds. The interaction of bioactive components and gut microbiota is a key link for drug efficacy. Relevant research is crucial to clarify bioactive components and their mechanisms, which involve the complex interaction among bioactive components, gut microbiota, and intestinal epithelial cells. This review also summarized the individualized, precise, and targeted intervention of gut microbiota in the field of intestinal microorganisms from the aspects of dietary fiber, microecological agents, fecal microbiota transplantation, and postbiotics. It will provide an important reference for intestinal microecology in the field of nutrition and health for people.

Conclusion::To sum up, the importance of human gut microbiota in the research of bioactive components metabolism and transformation has attracted the attention of scholars all over the world. It is believed that with the deepening of research, human gut microbiota will be more widely used in the pharmacodynamic basis, drug toxicity relationship, new drug discovery, drug absorption mechanism, and drug transport mechanism in the future.

About the authors

Lin Zhang

Department of Medical Nursing, Jiyuan Vocational and Technical College

Email: info@benthamscience.net

Xiao-Gen Ma

Department of Medical Nursing, Jiyuan Vocational and Technical College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006, 124(4), 837-848. doi: 10.1016/j.cell.2006.02.017 PMID: 16497592
  2. Wang, M.; Ahrné, S.; Jeppsson, B.; Molin, G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol., 2005, 54(2), 219-231. doi: 10.1016/j.femsec.2005.03.012 PMID: 16332321
  3. Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638. doi: 10.1126/science.1110591 PMID: 15831718
  4. Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm., 2008, 363(1-2), 1-25. doi: 10.1016/j.ijpharm.2008.07.009 PMID: 18682282
  5. Higarza, S.G.; Arboleya, S.; Arias, J.L.; Gueimonde, M.; Arias, N. The gut–microbiota–brain changes across the liver disease spectrum. Front. Cell. Neurosci., 2022, 16, 994404. doi: 10.3389/fncel.2022.994404 PMID: 36159394
  6. Gill, V.J.S.; Soni, S.; Shringarpure, M.; Anusheel; Bhardwaj, S.; Yadav, N.K.; Patel, A.; Patel, A. Gut microbiota interventions for the mmanagement of obesity: A literature review. Cureus, 2022, 14(9), e29317. PMID: 36161997
  7. Kleigrewe, K.; Haack, M.; Baudin, M.; Ménabréaz, T.; Crovadore, J.; Masri, M.; Beyrer, M.; Andlauer, W.; Lefort, F.; Dawid, C.; Brück, T.B.; Brück, W.M. Dietary modulation of the human gut microbiota and metabolome with flaxseed preparations. Int. J. Mol. Sci., 2022, 23(18), 10473. doi: 10.3390/ijms231810473 PMID: 36142393
  8. Ma, X.C.; Guo, D.A. Research ideas and methods of biotransformation of active components of traditional Chinese medicine. Chin. J. Nat. Med., 2007, 5, 162-168.
  9. Xu, P.; Hua, D.; Ma, C. Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol., 2007, 25(12), 571-576. doi: 10.1016/j.tibtech.2007.08.011 PMID: 17988755
  10. Chen, X.Q.; Huang, X.J.; Shi, D.Y.; Guo, S.N. Research progress in interaction of traditional Chinese medicine and intestinal flora. Chin. Tradit. Herbal Drugs, 2014, 7, 1031-1036.
  11. Li, L.; Jiang, H.; Wu, H.; Zeng, S. Simultaneous determination of luteolin and apigenin in dog plasma by RP-HPLC. J. Pharm. Biomed. Anal., 2005, 37(3), 615-620. doi: 10.1016/j.jpba.2004.11.012 PMID: 15740925
  12. Jiao, Y.; Li, Y.Z.; Zhang, Y.H.; Cui, W.; Li, Q.; Xie, K.L.; Yu, Y.; Yu, Y.H. Lysine demethylase KDM5B down‐regulates SIRT3 ‐mediated mitochondrial glucose and lipid metabolism in diabetic neuropathy. Diabet. Med., 2023, 40(1), e14964. doi: 10.1111/dme.14964 PMID: 36130801
  13. Jin, J.S.; Zhao, Y.F.; Nakamura, N.; Akao, T.; Kakiuchi, N.; Min, B.S.; Hattori, M. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria. Biol. Pharm. Bull., 2007, 30(11), 2113-2119. doi: 10.1248/bpb.30.2113 PMID: 17978485
  14. Sachdev, V.; Duta-Mare, M.; Korbelius, M.; Vujić, N.; Leopold, C.; Freark de Boer, J.; Rainer, S.; Fickert, P.; Kolb, D.; Kuipers, F.; Radovic, B.; Gorkiewicz, G.; Kratky, D. Impaired bile acid metabolism and gut dysbiosis in mice lacking lysosomal acid lipase. Cells, 2021, 10(10), 2619. doi: 10.3390/cells10102619 PMID: 34685599
  15. Wang, C.; Hu, M.; Yi, Y.; Wen, X.; Lv, C.; Shi, M.; Zeng, C. Multiomic analysis of dark tea extract on glycolipid metabolic disorders in db/db mice. Front. Nutr., 2022, 9, 1006517. doi: 10.3389/fnut.2022.1006517 PMID: 36176635
  16. Hargrove, T.Y.; Lamb, D.C.; Smith, J.A.; Wawrzak, Z.; Kelly, S.L.; Lepesheva, G.I. Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics. Sci. Rep., 2022, 12(1), 16232. doi: 10.1038/s41598-022-20671-0 PMID: 36171457
  17. Mitchell, J.H.; Gardner, P.T.; McPhail, D.B.; Morrice, P.C.; Collins, A.R.; Duthie, G.G. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch. Biochem. Biophys., 1998, 360(1), 142-148. doi: 10.1006/abbi.1998.0951 PMID: 9826439
  18. Setchell, K.D.R.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr., 2002, 132(12), 3577-3584. doi: 10.1093/jn/132.12.3577 PMID: 12468591
  19. Dey, P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol. Res., 2019, 147, 104367. doi: 10.1016/j.phrs.2019.104367 PMID: 31344423
  20. Xie, B.; Zu, X.; Wang, Z.; Xu, X.; Liu, G.; Liu, R. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front. Pharmacol., 2022, 13, 990476. doi: 10.3389/fphar.2022.990476 PMID: 36188559
  21. Kim, D.H.; Jung, E.A.; Sohng, I.S.; Han, J.A.; Kim, T.H.; Han, M.J. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res., 1998, 21(1), 17-23. doi: 10.1007/BF03216747 PMID: 9875509
  22. Li, Y.; Meselhy, M.R.; Wang, L.Q.; Ma, C.M.; Nakamura, N.; Hattori, M. Biotransformation of a C-glycosylflavone, abrusin 2′'-O-β-D-apioside, by human intestinal bacteria. Chem. Pharm. Bull., 2000, 48(8), 1239-1241. doi: 10.1248/cpb.48.1239 PMID: 10959599
  23. Marotti, I.; Bonetti, A.; Biavati, B.; Catizone, P.; Dinelli, G. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin. J. Agric. Food Chem., 2007, 55(10), 3913-3919. doi: 10.1021/jf062997g PMID: 17439230
  24. Yuan, Z.; Dong, F.; Pang, Z.; Fallah, N.; Zhou, Y.; Li, Z.; Hu, C. Integrated metabolomics and transcriptome analyses unveil pathways involved in sugar content and rind color of two sugarcane varieties. Front. Plant Sci., 2022, 13, 921536. doi: 10.3389/fpls.2022.921536 PMID: 35783968
  25. Schneider, H.; Simmering, R.; Hartmann, L.; Pforte, H.; Blaut, M. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. J. Appl. Microbiol., 2000, 89(6), 1027-1037. doi: 10.1046/j.1365-2672.2000.01209.x PMID: 11123476
  26. Schneider, H.; Schwiertz, A.; Collins, M.D.; Blaut, M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch. Microbiol., 1999, 171(2), 81-91. doi: 10.1007/s002030050682 PMID: 9914304
  27. Aura, A.M.; O’Leary, K.A.; Williamson, G.; Ojala, M.; Bailey, M.; Puupponen-Pimiä, R.; Nuutila, A.M.; Oksman-Caldentey, K.M.; Poutanen, K. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J. Agric. Food Chem., 2002, 50(6), 1725-1730. doi: 10.1021/jf0108056 PMID: 11879065
  28. Liu, T.; Wang, Y.; Wang, B.X.; Wu, L.J. Studies on metabolism of icariin in intestinal bacteria I. metabolism and transformation of icariin by intestinal bacteria. Chin. Tradit. Herbal Drugs, 2000, 31, 834-837.
  29. Wang, L.Q.; Meselhy, M.R.; Li, Y.; Nakamura, N.; Min, B.S.; Qin, G.W.; Hattori, M. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem. Pharm. Bull., 2001, 49(12), 1640-1643. doi: 10.1248/cpb.49.1640 PMID: 11767089
  30. Meselhy, M.R.; Nakamura, N.; Hattori, M. Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria. Chem. Pharm. Bull., 1997, 45(5), 888-893. doi: 10.1248/cpb.45.888 PMID: 9178524
  31. Hur, H.G.; Lay, J.O., Jr; Beger, R.D.; Freeman, J.P.; Rafii, F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch. Microbiol., 2000, 174(6), 422-428. doi: 10.1007/s002030000222 PMID: 11195098
  32. Jin, J.S.; Nishihata, T.; Kakiuchi, N.; Hattori, M. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol. Pharm. Bull., 2008, 31(8), 1621-1625. doi: 10.1248/bpb.31.1621 PMID: 18670101
  33. Hur, H.G.; Rafii, F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett., 2000, 192(1), 21-25. doi: 10.1111/j.1574-6968.2000.tb09353.x PMID: 11040423
  34. Kang, K.A.; Lee, K.H.; Chae, S.; Zhang, R.; Jung, M.S.; Kim, S.Y.; Kim, H.S.; Kim, D.H.; Hyun, J.W. Cytoprotective effect of tectorigenin, a metabolite formed by transformation of tectoridin by intestinal microflora, on oxidative stress induced by hydrogen peroxide. Eur. J. Pharmacol., 2005, 519(1-2), 16-23. doi: 10.1016/j.ejphar.2005.06.043 PMID: 16102749
  35. Han, Y.O.; Han, M.J.; Park, S.H.; Kim, D.H. Protective effects of kakkalide from Flos puerariae on ethanol-induced lethality and hepatic injury are dependent on its biotransformation by human intestinal microflora. J. Pharmacol. Sci., 2003, 93(3), 331-336. doi: 10.1254/jphs.93.331 PMID: 14646251
  36. Kim, M.; Kim, S.I.; Han, J.; Wang, X.L.; Song, D.G.; Kim, S.U. Stereospecific biotransformation of dihydrodaidzein into (3S)-equol by the human intestinal bacterium Eggerthella strain Julong 732. Appl. Environ. Microbiol., 2009, 75(10), 3062-3068. doi: 10.1128/AEM.02058-08 PMID: 19304836
  37. Hanske, L.; Loh, G.; Sczesny, S.; Blaut, M.; Braune, A. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol. Nutr. Food Res., 2010, 54(10), 1405-1413. doi: 10.1002/mnfr.200900517 PMID: 20397197
  38. Kang, M.J.; Khanal, T.; Kim, H.G.; Lee, D.H.; Yeo, H.K.; Lee, Y.S.; Ahn, Y.T.; Kim, D.H.; Jeong, H.G.; Jeong, T.C. Role of metabolism by human intestinal microflora in geniposide-induced toxicity in HepG2 cells. Arch. Pharm. Res., 2012, 35(4), 733-738. doi: 10.1007/s12272-012-0418-y PMID: 22553067
  39. Brownstein, K.J.; Thomas, A.L.; Nguyen, H.T.T.; Gang, D.R.; Folk, W.R. Changes in the harpagide, harpagoside, and verbascoside content of field grown Scrophularia lanceolata and Scrophularia marilandica in response to season and shade. Metabolites, 2021, 11(7), 464. doi: 10.3390/metabo11070464 PMID: 34357358
  40. Abdel-Hafez, A.A.M.; Nakamura, N.; Hattori, M. Biotransformation of phorbol by human intestinal bacteria. Chem. Pharm. Bull., 2002, 50(2), 160-164. doi: 10.1248/cpb.50.160 PMID: 11848202
  41. Bae, E.A.; Park, S.Y.; Kim, D.H. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull., 2000, 23(12), 1481-1485. doi: 10.1248/bpb.23.1481 PMID: 11145182
  42. Bae, E.A.; Choo, M.K.; Park, E.K.; Park, S.Y.; Shin, H.Y.; Kim, D.H. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull., 2002, 25(6), 743-747. doi: 10.1248/bpb.25.743 PMID: 12081140
  43. Ruan, J.Q.; Leong, W.I.; Yan, R.; Wang, Y.T. Characterization of metabolism and in vitro permeability study of notoginsenoside R1 from Radix notoginseng. J. Agric. Food Chem., 2010, 58(9), 5770-5776. doi: 10.1021/jf1005885 PMID: 20405945
  44. Guo, Y.; Chen, X.; Gong, P.; Wang, M.; Yao, W.; Yang, W.; Chen, F. In vitro digestion and fecal fermentation of Siraitia grosvenorii polysaccharide and its impact on human gut microbiota. Food Funct., 2022, 13(18), 9443-9458. doi: 10.1039/D2FO01776H PMID: 35972431
  45. Kim, D.H.; Hong, S.W.; Kim, B.T.; Bae, E.A.; Park, H.Y.; Han, M.J. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch. Pharm. Res., 2000, 23(2), 172-177. doi: 10.1007/BF02975509 PMID: 10836746
  46. Cheng, C.L.; Chao, W.T.; Li, Y.H.; Ou, Y.C.; Wang, S.S.; Chiu, K.Y.; Yuan, S.Y. Escin induces apoptosis in human bladder cancer cells: An in vitro and in vivo study. Eur. J. Pharmacol., 2018, 840, 79-88. doi: 10.1016/j.ejphar.2018.09.033 PMID: 30287153
  47. Kim, D.H.; Yu, K.W.; Bae, E.A.; Park, H.J.; Choi, J.W. Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol. Pharm. Bull., 1998, 21(4), 360-365. doi: 10.1248/bpb.21.360 PMID: 9586573
  48. Bae, E.A.; Yook, C.S.; Oh, O.J.; Chang, S.Y.; Nohara, T.; Kim, D.H. Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull., 2001, 24(5), 582-585. doi: 10.1248/bpb.24.582 PMID: 11379786
  49. Ding, W.J.; Deng, Y.; Feng, H.; Liu, W.W.; Hu, R.; Li, X.; Gu, Z.M.; Dong, X.P. Biotransformation of aesculin by human gut bacteria and identification of its metabolites in rat urine. World J. Gastroenterol., 2009, 15(12), 1518-1523. doi: 10.3748/wjg.15.1518 PMID: 19322928
  50. Zhang, P.; Yang, X.W. Biotransformation of nodakenin and simultaneous quantification of nodakenin and its aglycone in incubated system of human intestinal bacteria by HPLC method. J. Asian Nat. Prod. Res., 2009, 11(4), 371-379. doi: 10.1080/10286020902767716 PMID: 19431019
  51. Jin, J.S.; Hattori, M. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans. J. Agric. Food Chem., 2009, 57(16), 7537-7542. doi: 10.1021/jf900902p PMID: 19630415
  52. Jin, J.S.; Hattori, M. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism. Biol. Pharm. Bull., 2010, 33(8), 1443-1447. doi: 10.1248/bpb.33.1443 PMID: 20686246
  53. Jin, J.S.; Zhao, Y.F.; Nakamura, N.; Akao, T.; Kakiuchi, N.; Hattori, M. Isolation and characterization of a human intestinal bacterium, Eubacterium sp. ARC-2, capable of demethylating arctigenin, in the essential metabolic process to enterolactone. Biol. Pharm. Bull., 2007, 30(5), 904-911. doi: 10.1248/bpb.30.904 PMID: 17473433
  54. Xie, L.H.; Ahn, E.M.; Akao, T.; Abdel-Hafez, A.A.M.; Nakamura, N.; Hattori, M. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull., 2003, 51(4), 378-384. doi: 10.1248/cpb.51.378 PMID: 12672988
  55. Linden, D.R. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid. Redox Signal., 2014, 20(5), 818-830. doi: 10.1089/ars.2013.5312 PMID: 23582008
  56. El-Mekkawy, S.; Meselhy, M.; Kawata, Y.; Kadota, S.; Hattori, M.; Namba, T. Metabolism of strychnine N-oxide and brucine N-oxide by human intestinal bacteria. Planta Med., 1993, 59(4), 347-350. doi: 10.1055/s-2006-959698 PMID: 8103941
  57. Fang, H.; Anhê, F.F.; Schertzer, J.D. Dietary sugar lowers immunity and microbiota that protect against metabolic disease. Cell Metab., 2022, 34(10), 1422-1424. doi: 10.1016/j.cmet.2022.09.006 PMID: 36198287
  58. Fukiya, S.; Arata, M.; Kawashima, H.; Yoshida, D.; Kaneko, M.; Minamida, K.; Watanabe, J.; Ogura, Y.; Uchida, K.; Itoh, K.; Wada, M.; Ito, S.; Yokota, A. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces. FEMS Microbiol. Lett., 2009, 293(2), 263-270. doi: 10.1111/j.1574-6968.2009.01531.x PMID: 19243441
  59. Ma, X.; Xin, X.; Liu, K.; Han, J.; Guo, D. Microbial transformation of cinobufagin by Syncephalastrum racemosum. J. Nat. Prod., 2008, 71(7), 1268-1270. doi: 10.1021/np800210a PMID: 18558746
  60. Jia, P.; Li, F.; Zhang, S.; Wu, G.; Wang, Y.; Li, J. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front. Microbiol., 2022, 13, 989272. doi: 10.3389/fmicb.2022.989272 PMID: 36160214
  61. Zhou, X.; Wang, L.; Sun, X.; Yang, X.; Chen, C.; Wang, Q.; Yang, X. Cinnabar is not converted into methylmercury by human intestinal bacteria. J. Ethnopharmacol., 2011, 135(1), 110-115. doi: 10.1016/j.jep.2011.02.032 PMID: 21382464
  62. Coakley, M.; Banni, S.; Johnson, M.C.; Mills, S.; Devery, R.; Fitzgerald, G.; Paul Ross, R.; Stanton, C. Inhibitory effect of conjugated alpha-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids, 2009, 44(3), 249-256. doi: 10.1007/s11745-008-3269-z PMID: 19048324
  63. Kim, D.H.; Park, E.K.; Bae, E.A.; Han, M.J. Metabolism of rhaponticin and chrysophanol 8-o-β-D-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol. Pharm. Bull., 2000, 23(7), 830-833. doi: 10.1248/bpb.23.830 PMID: 10919361
  64. Sanugul, K.; Akao, T.; Li, Y.; Kakiuchi, N.; Nakamura, N.; Hattori, M. Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biol. Pharm. Bull., 2005, 28(9), 1672-1678. doi: 10.1248/bpb.28.1672 PMID: 16141538
  65. Sauer, J.; Richter, K.K.; Pool-Zobel, B.L. Products formed during fermentation of the prebiotic inulin with humangut flora enhance expression of biotransformation genes in human primarycolon cells. Br. J. Nutr., 2007, 97(5), 928-937. doi: 10.1017/S0007114507666422 PMID: 17381985
  66. Zhang, C.; Hou, T.; Yu, Q.; Wang, J.; Ni, M.; Zi, Y.; Xin, H.; Zhang, Y.; Sun, Y. Clostridium butyricum improves the intestinal health of goats by regulating the intestinal microbial community. Front. Microbiol., 2022, 13, 991266. doi: 10.3389/fmicb.2022.991266 PMID: 36204609
  67. Bai, R.; Cui, F.; Li, W.; Wang, Y.; Wang, Z.; Gao, Y.; Wang, N.; Xu, Q.; Hu, F.; Zhang, Y. Codonopsis pilosula oligosaccharides modulate the gut microbiota and change serum metabolomic profiles in high-fat diet-induced obese mice. Food Funct., 2022, 13(15), 8143-8157. doi: 10.1039/D2FO01119K PMID: 35816111
  68. Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; Li, X.; Ning, G.; Zhao, L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 2012, 7(8), e42529. doi: 10.1371/journal.pone.0042529 PMID: 22880019
  69. Shin, N.R.; Bose, S.; Wang, J.H.; Ansari, A.; Lim, S.K.; Chin, Y.; Choi, H.; Kim, H. Flos lonicera combined with metformin ameliorates hepatosteatosis and glucose intolerance in association with gut microbiota modulation. Front. Microbiol., 2017, 8, 2271. doi: 10.3389/fmicb.2017.02271 PMID: 29204141
  70. Chen, Z.; Xue, H.; Yuan, H.; Wang, J.; Wang, Q.; Zhang, X. Complication rates in different gastrectomy techniques of enhanced recovery after surgery for gastric cancer: A meta-analysis. J. Coll. Physicians Surg. Pak., 2022, 32(10), 1318-1325. doi: 10.29271/jcpsp.2022.10.1318 PMID: 36205278
  71. Wang, Y.S.; Su, Y.L.; Wu, Y.H.; Feng, Z.; Zheng, A.H.; Liu, B.Y.; Zhou, B.; Cai, G.X. Effect of dachengqi decoction on ultrastructural changes of intestinal mucosal epithelial cells in scalded rats. Chin. Arch. Trad. Chin. Med., 2009, 27, 1768-1770.
  72. Dong, Y.; He, C.M.; Lu, J.G. Experimental study on the regulation of NO-cGMP-PKG pathway in intestinal cajal cells by Yiqi Kaimi Recipe. J. Shanghai Univ. Trad. Chin, 2013, 27, 82-86.
  73. Lei, L.; Bai, X.L.; Hu, J.Y.; Yu, Y.; Li, X.P.; Li, D.X.; Zhang, Y.; Deng, W.L. Effects of three kinds of borneol on intestinal cytochrome P450 and glycoprotein P-gp in rats. Pharmacol. Clin. Chin. Mater. Med., 2016, 32, 83-87.
  74. Wang, R.F.; Yuan, M.; Yang, X.B.; Xu, W.; Yang, X.W. Intestinal bacterial transformation – a nonnegligible part of Chinese medicine research. J. Asian Nat. Prod. Res., 2013, 15(5), 532-549. doi: 10.1080/10286020.2013.783573 PMID: 23614368
  75. Kobashi, K.; Nishimura, T.; Kusaka, M.; Hattori, M.; Namba, T. Metabolism of sennosides by human intestinal bacteria. Planta Med., 1980, 40(11), 225-236. doi: 10.1055/s-2008-1074963 PMID: 7443842
  76. Hattori, M.; Kim, G.; Motoike, S.; Kobashi, K.; Namba, T. Metabolism of sennosides by intestinal flora. Chem. Pharm. Bull., 1982, 30(4), 1338-1346. doi: 10.1248/cpb.30.1338 PMID: 7105255
  77. Sasaki, K.; Yamauchi, K.; Kuwano, S. Metabolic activation of sennoside A in mice. Planta Med., 1979, 37(12), 370-378. doi: 10.1055/s-0028-1097352 PMID: 538110
  78. Yamauchi, K.; Shinano, K.; Nakajima, K.; Yagi, T.; Kuwano, S. Metabolic activation of sennoside C in mice: synergistic action of anthrones. J. Pharm. Pharmacol., 2011, 44(12), 973-976. doi: 10.1111/j.2042-7158.1992.tb07076.x PMID: 1361561
  79. Chen, R.; Guan, Z.; Zhong, X.; Zhang, W.; Zhang, Y. Network pharmacology prediction: The possible mechanisms of cinobufotalin against osteosarcoma. Comput. Math. Methods Med., 2022, 2022, 1-9. doi: 10.1155/2022/3197402 PMID: 35069780
  80. Xu, C.H.; Wang, P.; Wang, Y.; Yang, Y.; Li, D.H.; Li, H.F.; Sun, S.Q.; Wu, X.Z. Pharmacokinetic comparisons of two different combinations of Shaoyao-Gancao Decoction in rats: Competing mechanisms between paeoniflorin and glycyrrhetinic acid. J. Ethnopharmacol., 2013, 149(2), 443-452. doi: 10.1016/j.jep.2013.06.049 PMID: 23867078
  81. Liu, L.; Guo, L.; Zhao, C.; Wu, X.; Wang, R.; Liu, C. Characterization of the intestinal absorption of seven flavonoids from the flowers of Trollius chinensis using the Caco-2 cell monolayer model. PLoS One, 2015, 10(3), e0119263. doi: 10.1371/journal.pone.0119263 PMID: 25789809
  82. Ma, Y.; Li, H.; Guan, S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev. Ind. Pharm., 2015, 41(2), 177-182. doi: 10.3109/03639045.2014.947510 PMID: 25113432
  83. van de Kerkhof, E.G.; Ungell, A.L.B.; Sjöberg, Å.K.; de Jager, M.H.; Hilgendorf, C.; de Graaf, I.A.M.; Groothuis, G.M.M. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared with ussing chamber preparations. Drug Metab. Dispos., 2006, 34(11), 1893-1902. doi: 10.1124/dmd.106.011148 PMID: 16914511
  84. Zhu, Y.; Ding, X.; Fang, C.; Zhang, Q.Y. Regulation of intestinal cytochrome P450 expression by hepatic cytochrome P450: possible involvement of fibroblast growth factor 15 and impact on systemic drug exposure. Mol. Pharmacol., 2014, 85(1), 139-147. doi: 10.1124/mol.113.088914 PMID: 24184963
  85. Dong, R.H.; Fang, Z.Z.; Zhu, L.L.; Ge, G.B.; Yang, L.; Liu, Z.Y. Identification of UDP-glucuronosyltransferase isoforms involved in hepatic and intestinal glucuronidation of phytochemical carvacrol. Xenobiotica, 2012, 42(10), 1009-1016. doi: 10.3109/00498254.2012.682614 PMID: 22559213
  86. Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J., 2012, 6(10), 1848-1857. doi: 10.1038/ismej.2012.27 PMID: 22495068
  87. Koecher, K.J.; Noack, J.A.; Timm, D.A.; Klosterbuer, A.S.; Thomas, W.; Slavin, J.L. Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber. J. Agric. Food Chem., 2014, 62(6), 1332-1337. doi: 10.1021/jf404688n PMID: 24446899
  88. Anselmo, A.C.; McHugh, K.J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater., 2016, 28(43), 9486-9490. doi: 10.1002/adma.201603270 PMID: 27616140
  89. Delzenne, N.M.; Neyrinck, A.M.; Bäckhed, F.; Cani, P.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat. Rev. Endocrinol., 2011, 7(11), 639-646. doi: 10.1038/nrendo.2011.126 PMID: 21826100
  90. Okubo, T.; Takemura, N.; Yoshida, A.; Sonoyama, K. KK/Ta mice administered Lactobacillus plantarum strain No. 14 have lower adiposity and higher insulin sensitivity. Biosci. Microbiota Food Health, 2013, 32(3), 93-100. doi: 10.12938/bmfh.32.93 PMID: 24936367
  91. Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial. Front. Cell. Infect. Microbiol., 2022, 12, 759306. doi: 10.3389/fcimb.2022.759306 PMID: 35860380
  92. Kassam, Z.; Lee, C.H.; Yuan, Y.; Hunt, R.H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol., 2013, 108(4), 500-508. doi: 10.1038/ajg.2013.59 PMID: 23511459
  93. Maguire, M.; Maguire, G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev. Neurosci., 2019, 30(2), 179-201. doi: 10.1515/revneuro-2018-0024 PMID: 30173208
  94. Mosca, F.; Gianni, M.L.; Rescigno, M. Can postbiotics represent a new strategy for NEC? Adv. Exp. Med. Biol., 2019, 1125, 37-45. doi: 10.1007/5584_2018_314 PMID: 30656552
  95. Kang, Y.; Kang, X.; Yang, H.; Liu, H.; Yang, X.; Liu, Q.; Tian, H.; Xue, Y.; Ren, P.; Kuang, X.; Cai, Y.; Tong, M.; Li, L.; Fan, W. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol. Res., 2022, 175, 106020. doi: 10.1016/j.phrs.2021.106020 PMID: 34896249
  96. Piccioni, A.; Rosa, F.; Manca, F.; Pignataro, G.; Zanza, C.; Savioli, G.; Covino, M.; Ojetti, V.; Gasbarrini, A.; Franceschi, F.; Candelli, M. Gut microbiota and clostridium difficile: what we know and the new frontiers. Int. J. Mol. Sci., 2022, 23(21), 13323. doi: 10.3390/ijms232113323 PMID: 36362106
  97. Xie, Z.; Li, M.; Qian, M.; Yang, Z.; Han, X. Co-Cultures of Lactobacillus acidophilus and Bacillus subtilis enhance mucosal barrier by modulating gut microbiota-derived short-chain fatty acids. Nutrients, 2022, 14(21), 4475. doi: 10.3390/nu14214475 PMID: 36364738
  98. Cukrowska, B.; Bierła, J.B.; Zakrzewska, M.; Klukowski, M.; Maciorkowska, E. The relationship between the infant gut microbiota and allergy. The role of bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early Life. Nutrients, 2020, 12(4), 946. doi: 10.3390/nu12040946 PMID: 32235348
  99. Béghin, L.; Tims, S.; Roelofs, M.; Rougé, C.; Oozeer, R.; Rakza, T.; Chirico, G.; Roeselers, G.; Knol, J.; Rozé, J.C.; Turck, D. Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clin. Nutr., 2021, 40(3), 778-787. doi: 10.1016/j.clnu.2020.07.024 PMID: 32893049
  100. Gupta, H.; Kim, S.H.; Kim, S.K.; Han, S.H.; Kwon, H.C.; Suk, K.T. Beneficial shifts in gut microbiota by Lacticaseibacillus rhamnosus R0011 and Lactobacillus helveticus R0052 in alcoholic hepatitis. Microorganisms, 2022, 10(7), 1474. doi: 10.3390/microorganisms10071474 PMID: 35889193
  101. Di Luccia, B.; Colonna, M. Precision probiotic medicine to improve ICB immunotherapy. Cancer Discov., 2022, 12(5), 1189-1190. doi: 10.1158/2159-8290.CD-22-0221 PMID: 35491646
  102. Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71. doi: 10.1038/s41579-020-0433-9 PMID: 32887946
  103. Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci., 2019, 76(3), 473-493. doi: 10.1007/s00018-018-2943-4 PMID: 30317530
  104. Zmora, N.; Suez, J.; Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(1), 35-56. doi: 10.1038/s41575-018-0061-2 PMID: 30262901
  105. Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23(6), 716-724. doi: 10.1016/j.chom.2018.05.003 PMID: 29902437

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers