B2M is a Biomarker Associated With Immune Infiltration In High Altitude Pulmonary Edema


Cite item

Full Text

Abstract

Background:High altitude pulmonary edema (HAPE) is a serious mountain sickness with certain mortality. Its early diagnosis is very important. However, the mechanism of its onset and progression is still controversial.

Aim:This study aimed to analyze the HAPE occurrence and development mechanism and search for prospective biomarkers in peripheral blood.

Methods:The difference genes (DEGs) of the Control group and the HAPE group were enriched by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and then GSEA analysis was performed. After identifying the immune-related hub genes, QPCR was used to verify and analyze the hub gene function and diagnostic value with single-gene GSEA and ROC curves, and the drugs that acted on the hub gene was found in the CTD database. Immune infiltration and its association with the hub genes were analyzed using CIBERSORT. Finally, WGCNA was employed to investigate immune invasion cells' significantly related gene modules, following enrichment analysis of their GO and KEGG.

Results:The dataset enrichment analysis, immune invasion analysis and WGCNA analysis showed that the occurrence and early progression of HAPE were unrelated to inflammation. The hub genes associated with immunity obtained with MCODE algorithm of Cytoscape were JAK2 and B2M. RT-qPCR and ROC curves confirmed that the hub gene B2M was a specific biomarker of HAPE and had diagnostic value, and single-gene GSEA analysis confirmed that it participated in MHC I molecule-mediated antigen presentation ability decreased, resulting in reduced immunity.

Conclusion:Occurrence and early progression of high altitude pulmonary edema may not be related to inflammation. B2M may be a new clinical potential biomarker for HAPE for early diagnosis and therapeutic evaluation as well as therapeutic targets, and its decrease may be related to reduced immunity due to reduced ability of MCH I to participate in antigen submission.

About the authors

Mu Yuan

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Xueting Hu

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Wei Xing

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Xiaofeng Wu

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Chengxiu Pu

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Wei Guo

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Xiyan Zhu

Department of Military Traffic Injury Prevention and Treatment, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Mengwei Yao

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Luoquan Ao

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Email: info@benthamscience.net

Zhan Li

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Author for correspondence.
Email: info@benthamscience.net

Xiang Xu

Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Si, L.; Wang, H.; Jiang, Y.; Yi, Y.; Wang, R.; Long, Q.; Zhao, Y. MIR17HG polymorphisms contribute to high-altitude pulmonary edema susceptibility in the Chinese population. Sci. Rep., 2022, 12(1), 4346. doi: 10.1038/s41598-022-06944-8 PMID: 35288592
  2. Wright, A.D.; Brearey, S.P.; Imray, C.H.E. High hopes at high altitudes: pharmacotherapy for acute mountain sickness and high-altitude cerebral and pulmonary oedema. Expert Opin. Pharmacother., 2008, 9(1), 119-127. doi: 10.1517/14656566.9.1.119 PMID: 18076343
  3. Ascaso, F.J.; Nerín, M.A.; Villén, L.; Morandeira, J.R.; Cristóbal, J.A. Acute mountain sickness and retinal evaluation by optical coherence tomography. Eur. J. Ophthalmol., 2012, 22(4), 580-589. doi: 10.5301/ejo.5000091 PMID: 22139614
  4. Sharma, K.R.; Mishra, R.; Gautam, J.; Alaref, A.; Hassan, A.; Jahan, N. Patchy vasoconstriction versus inflammation: A debate in the pathogenesis of high altitude pulmonary edema. Cureus, 2020, 12(9), e10371. doi: 10.7759/cureus.10371
  5. Sharma, M.; Singh, S.B.; Sarkar, S. Genome wide expression analysis suggests perturbation of vascular homeostasis during high altitude pulmonary edema. PLoS One, 2014, 9(1), e85902. doi: 10.1371/journal.pone.0085902 PMID: 24465776
  6. Ahmad, Y.; Sharma, N.K.; Ahmad, M.F.; Sharma, M.; Garg, I.; Srivastava, M.; Bhargava, K. The proteome of hypobaric induced hypoxic lung: Insights from temporal proteomic profiling for biomarker discovery. Sci. Rep., 2015, 5(1), 10681. doi: 10.1038/srep10681 PMID: 26022216
  7. Nussbaumer-Ochsner, Y.; Schuepfer, N.; Ursprung, J.; Siebenmann, C.; Maggiorini, M.; Bloch, K.E. Sleep and breathing in high altitude pulmonary edema susceptible subjects at 4,559 meters. Sleep, 2012, 35(10), 1413-1421. doi: 10.5665/sleep.2126 PMID: 23024440
  8. Maggiorini, M. High altitude-induced pulmonary oedema. Cardiovasc. Res., 2006, 72(1), 41-50. doi: 10.1016/j.cardiores.2006.07.004 PMID: 16904089
  9. Hilty, M.P.; Zügel, S.; Schoeb, M.; Auinger, K.; Dehnert, C.; Maggiorini, M. Soluble urokinase-type plasminogen activator receptor plasma concentration may predict susceptibility to high altitude pulmonary edema. Mediators Inflamm., 2016, 2016, 1942460. doi: 10.1155/2016/1942460 PMID: 27378823
  10. Bailey, D.M.; Kleger, G.R.; Holzgraefe, M.; Ballmer, P.E.; Bärtsch, P. Pathophysiological significance of peroxidative stress, neuronal damage, and membrane permeability in acute mountain sickness. J. Appl. Physiol., 2004, 96(4), 1459-1463. doi: 10.1152/japplphysiol.00704.2003 PMID: 14594861
  11. Julian, C.G.; Subudhi, A.W.; Wilson, M.J.; Dimmen, A.C.; Pecha, T.; Roach, R.C. Acute mountain sickness, inflammation, and permeability: new insights from a blood biomarker study. J. Appl. Physiol., 2011, 111(2), 392-399. doi: 10.1152/japplphysiol.00391.2011 PMID: 21636566
  12. Swenson, E.R.; Maggiorini, M.; Mongovin, S.; Gibbs, J.S.R.; Greve, I.; Mairbäurl, H.; Bärtsch, P. Pathogenesis of high-altitude pulmonary edema: Inflammation is not an etiologic factor. JAMA, 2002, 287(17), 2228-2235. doi: 10.1001/jama.287.17.2228 PMID: 11980523
  13. Zhou, Q. Standardization of methods for early diagnosis and on-site treatment of high-altitude pulmonary edema. Pulm. Med., 2011, 2011, 190648. doi: 10.1155/2011/190648 PMID: 21660284
  14. Mellor, A.; Boos, C.; Holdsworth, D.; Begley, J.; Hall, D.; Lumley, A.; Burnett, A.; Hawkins, A.; O’Hara, J.; Ball, S.; Woods, D. Cardiac biomarkers at high altitude. High Alt. Med. Biol., 2014, 15(4), 452-458. doi: 10.1089/ham.2014.1035 PMID: 25330333
  15. Guo, L.; Tan, G.; Liu, P.; Li, H.; Tang, L.; Huang, L.; Ren, Q. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci. Rep., 2015, 5(1), 15126. doi: 10.1038/srep15126 PMID: 26459926
  16. Janvilisri, T.; Suzuki, H.; Scaria, J.; Chen, J.W.; Charoensawan, V. High-throughput screening for biomarker discovery. Dis. Markers, 2015, 2015, 108064. doi: 10.1155/2015/108064 PMID: 26060333
  17. Dai, F.; Chen, G.; Wang, Y.; Zhang, L.; Long, Y.; Yuan, M.; Yang, D.; Liu, S.; Cheng, Y.; Zhang, L. Identification of candidate biomarkers correlated with the diagnosis and prognosis of cervical cancer via integrated bioinformatics analysis. OncoTargets Ther., 2019, 12, 4517-4532. doi: 10.2147/OTT.S199615 PMID: 31354287
  18. Yang, Y.X.; Li, L. Identification of potential biomarkers of sepsis using bioinformatics analysis. Exp. Ther. Med., 2017, 13(5), 1689-1696. doi: 10.3892/etm.2017.4178 PMID: 28565754
  19. Huang, S.; Feng, C.; Zhai, Y.Z.; Zhou, X.; Li, B.; Wang, L.L.; Chen, W.; Lv, F.Q.; Li, T.S. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Exp. Ther. Med., 2017, 13(4), 1235-1244. doi: 10.3892/etm.2017.4151 PMID: 28413462
  20. Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110. doi: 10.1007/978-1-4939-3578-9_5 PMID: 27008011
  21. Chan, B.K.C. Data analysis using R programming. Adv. Exp. Med. Biol., 2018, 1082, 47-122. doi: 10.1007/978-3-319-93791-5_2 PMID: 30357717
  22. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  23. Gustavsson, E.K.; Zhang, D.; Reynolds, R.H.; Garcia-Ruiz, S.; Ryten, M. ggtranscript: An R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics, 2022, 38(15), 3844-3846. doi: 10.1093/bioinformatics/btac409 PMID: 35751589
  24. Hu, K. Become competent in generating rna-seq heat maps in one day for novices without prior R experience. Methods Mol. Biol., 2021, 2239, 269-303. doi: 10.1007/978-1-0716-1084-8_17 PMID: 33226625
  25. Chen, L.; Zhang, Y.H.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One, 2017, 12(9), e0184129. doi: 10.1371/journal.pone.0184129 PMID: 28873455
  26. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
  27. Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261. doi: 10.1093/nar/gkg034 PMID: 12519996
  28. Zhang, T.; Zhao, L.L.; Zhang, Z.R.; Fu, P.D.; Su, Z.D.; Qi, L.C.; Li, X.Q.; Dong, Y.M. Interaction network analysis revealed biomarkers in myocardial infarction. Mol. Biol. Rep., 2014, 41(8), 4997-5003. doi: 10.1007/s11033-014-3366-4 PMID: 24748432
  29. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  30. Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2. doi: 10.1186/1471-2105-4-2 PMID: 12525261
  31. Wang, X.; Zhang, J.; Yang, Y.; Dong, W.; Wang, F.; Wang, L.; Li, X. Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4. Exp. Ther. Med., 2013, 6(1), 263-267. doi: 10.3892/etm.2013.1116 PMID: 23935758
  32. Xu, F.F.; Zhang, Z.B.; Wang, Y.Y.; Wang, T.H. Brain-derived glia maturation factor β participates in lung injury induced by acute cerebral ischemia by increasing ros in endothelial cells. Neurosci. Bull., 2018, 34(6), 1077-1090. doi: 10.1007/s12264-018-0283-x PMID: 30191459
  33. Qu, L.; Li, Y.; Chen, C.; Yin, T.; Fang, Q.; Zhao, Y.; Lv, W.; Liu, Z.; Chen, Y.; Shen, L. Caveolin-1 identified as a key mediator of acute lung injury using bioinformatics and functional research. Cell Death Dis., 2022, 13(8), 686. doi: 10.1038/s41419-022-05134-8 PMID: 35933468
  34. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550. doi: 10.1073/pnas.0506580102 PMID: 16199517
  35. Bhattacharya, S.; Andorf, S.; Gomes, L.; Dunn, P.; Schaefer, H.; Pontius, J.; Berger, P.; Desborough, V.; Smith, T.; Campbell, J.; Thomson, E.; Monteiro, R.; Guimaraes, P.; Walters, B.; Wiser, J.; Butte, A.J. ImmPort: Disseminating data to the public for the future of immunology. Immunol. Res., 2014, 58(2-3), 234-239. doi: 10.1007/s12026-014-8516-1 PMID: 24791905
  36. Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res., 2021, 49(D1), D1144-D1151. doi: 10.1093/nar/gkaa1084 PMID: 33237278
  37. Kayser, B. Nutrition and high altitude exposure. Int. J. Sports Med., 1992, 13(S1), S129-S132. doi: 10.1055/s-2007-1024616 PMID: 1483750
  38. Tan, J.; Gao, C.; Wang, C.; Ma, L.; Hou, X.; Liu, X.; Li, Z. Expression of aquaporin-1 and aquaporin-5 in a rat model of high-altitude pulmonary edema and the effect of hyperbaric oxygen exposure. Dose Response, 2020, 18(4) doi: 10.1177/1559325820970821 PMID: 33192205
  39. Ricciardolo, F.; Nijkamp, F.; Folkerts, G. Nitric oxide synthase (NOS) as therapeutic target for asthma and chronic obstructive pulmonary disease. Curr. Drug Targets, 2006, 7(6), 721-735. doi: 10.2174/138945006777435290 PMID: 16787174
  40. Parker, J.C. Acute lung injury and pulmonary vascular permeability: Use of transgenic models. Compr. Physiol., 2011, 1(2), 835-882. doi: 10.1002/cphy.c100013 PMID: 23737205
  41. Goto, T.; Hussein, M.H.; Kato, S.; Daoud, G.A.H.; Kato, T.; Kakita, H.; Mizuno, H.; Imai, M.; Ito, T.; Kato, I.; Suzuki, S.; Okada, N.; Togari, H.; Okada, H. Endothelin receptor antagonist attenuates inflammatory response and prolongs the survival time in a neonatal sepsis model. Intensive Care Med., 2010, 36(12), 2132-2139. doi: 10.1007/s00134-010-2040-0 PMID: 20845025
  42. Chen, J.; Zhang, W.; Xu, Q.; Zhang, J.; Chen, W.; Xu, Z.; Li, C.; Wang, Z.; Zhang, Y.; Zhen, Y.; Feng, J.; Chen, J.; Chen, J. Ang-(1-7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway. Int. J. Mol. Med., 2018, 41(5), 2865-2878. doi: 10.3892/ijmm.2018.3507 PMID: 29484371
  43. Shinha, T.; Mi, D.; Liu, Z.; Orschell, C.M.; Lederman, M.M.; Gupta, S.K. Relationships between renal parameters and serum and urine markers of inflammation in those with and without HIV infection. AIDS Res. Hum. Retroviruses, 2015, 31(4), 375-383. doi: 10.1089/aid.2014.0234 PMID: 25646974
  44. Wu, H.H.; Niu, K.C.; Lin, C.H.; Lin, H.J.; Chang, C.P.; Wang, C.T. HSP-70-mediated hyperbaric oxygen reduces brain and pulmonary edema and cognitive deficits in rats in a simulated high-altitude exposure. BioMed Res. Int., 2018, 2018, 4608150. doi: 10.1155/2018/4608150 PMID: 30515398
  45. She, J.; Goolaerts, A.; Shen, J.; Bi, J.; Tong, L.; Gao, L.; Song, Y.; Bai, C. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats. J. Cell. Mol. Med., 2012, 16(12), 3074-3084. doi: 10.1111/j.1582-4934.2012.01588.x PMID: 22568566
  46. Sreejit, G.; Ahmed, A.; Parveen, N.; Jha, V.; Valluri, V.L.; Ghosh, S.; Mukhopadhyay, S. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog., 2014, 10(10), e1004446. doi: 10.1371/journal.ppat.1004446 PMID: 25356553
  47. Seamon, K.; Kurlak, L.O.; Warthan, M.; Stratikos, E.; Strauss, J.F., III; Mistry, H.D.; Lee, E.D. The differential expression of ERAP1/ERAP2 and immune cell activation in pre-eclampsia. Front. Immunol., 2020, 11, 396. doi: 10.3389/fimmu.2020.00396 PMID: 32210971
  48. Chi, S.; Weiss, A.; Wang, H. A CRISPR-based toolbox for studying T cell signal transduction. BioMed Res. Int., 2016, 2016, 5052369. doi: 10.1155/2016/5052369 PMID: 27057542
  49. Zhang, Y.; Wang, Y.; Shao, L.; Pan, X.; Liang, C.; Liu, B.; Zhang, Y.; Xie, W.; Yan, B.; Liu, F.; Yu, X.; Li, Y. Knockout of beta‐2 microglobulin reduces stem cell‐induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR‐24/Bim pathway. J. Cell. Mol. Med., 2020, 24(1), 695-710. doi: 10.1111/jcmm.14778 PMID: 31729180
  50. Watson, J.A.; Watson, C.J.; McCrohan, A.M.; Woodfine, K.; Tosetto, M.; McDaid, J.; Gallagher, E.; Betts, D.; Baugh, J.; O’Sullivan, J.; Murrell, A.; Watson, R.W.G.; McCann, A. Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum. Mol. Genet., 2009, 18(19), 3594-3604. doi: 10.1093/hmg/ddp307 PMID: 19584087
  51. Zahran, A.M.; Abdallah, A.M.; Saad, K.; Osman, N.S.; Youssef, M.A.M.; Abdel-Raheem, Y.F.; Elsayh, K.I.; Abo Elgheet, A.M.; Darwish, S.F.; Alblihed, M.A.; Elhoufey, A. Peripheral blood B and T cell profiles in children with active juvenile idiopathic arthritis. Arch. Immunol. Ther. Exp. (Warsz.), 2019, 67(6), 427-432. doi: 10.1007/s00005-019-00560-7 PMID: 31535168
  52. Lee, N.S.; Barber, L.; Akula, S.M.; Sigounas, G.; Kataria, Y.P.; Arce, S. Disturbed homeostasis and multiple signaling defects in the peripheral blood B-cell compartment of patients with severe chronic sarcoidosis. Clin. Vaccine Immunol., 2011, 18(8), 1306-1316. doi: 10.1128/CVI.05118-11 PMID: 21653741
  53. Baravalle, G.; Park, H.; McSweeney, M.; Ohmura-Hoshino, M.; Matsuki, Y.; Ishido, S.; Shin, J.S. Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. J. Immunol., 2011, 187(6), 2966-2973. doi: 10.4049/jimmunol.1101643 PMID: 21849678
  54. Meehan, R.; Duncan, U.; Neale, L.; Taylor, G.; Muchmore, H.; Scott, N.; Ramsey, K.; Smith, E.; Rock, P.; Goldblum, R.; Houston, C. Operation Everest II: Alterations in the immune system at high altitudes. J. Clin. Immunol., 1988, 8(5), 397-406. doi: 10.1007/BF00917156 PMID: 2460489
  55. Soree, P.; Gupta, R.K.; Singh, K.; Desiraju, K.; Agrawal, A.; Vats, P.; Bharadwaj, A.; Baburaj, T.P.; Chaudhary, P.; Singh, V.K.; Verma, S.; Bajaj, A.C.; Singh, S.B. Raised HIF1α during normoxia in high altitude pulmonary edema susceptible non-mountaineers. Sci. Rep., 2016, 6(1), 26468. doi: 10.1038/srep26468 PMID: 27210110
  56. Torrejon, D.Y.; Abril-Rodriguez, G.; Champhekar, A.S.; Tsoi, J.; Campbell, K.M.; Kalbasi, A.; Parisi, G.; Zaretsky, J.M.; Garcia-Diaz, A.; Puig-Saus, C.; Cheung-Lau, G.; Wohlwender, T.; Krystofinski, P.; Vega-Crespo, A.; Lee, C.M.; Mascaro, P.; Grasso, C.S.; Berent-Maoz, B.; Comin-Anduix, B.; Hu-Lieskovan, S.; Ribas, A. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov., 2020, 10(8), 1140-1157. doi: 10.1158/2159-8290.CD-19-1409 PMID: 32467343
  57. Reichel, J.; Chadburn, A.; Rubinstein, P.G.; Giulino-Roth, L.; Tam, W.; Liu, Y.; Gaiolla, R.; Eng, K.; Brody, J.; Inghirami, G.; Carlo-Stella, C.; Santoro, A.; Rahal, D.; Totonchy, J.; Elemento, O.; Cesarman, E.; Roshal, M. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood, 2015, 125(7), 1061-1072. doi: 10.1182/blood-2014-11-610436 PMID: 25488972

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers