Impact of Tyrosine Kinase Inhibitors (TKIs) on Growth in Children and Adolescents with Chronic Myeloid Leukemia: A Systematic Review
- Autores: Katsarou D.1, Kotanidou E.1, Tsinopoulou V.2, Tragiannidis A.2, Hatzipantelis E.1, Galli-Tsinopoulou A.1
 - 
							Afiliações: 
							
- Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
 - 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital,, Aristotle University of Thessaloniki
 
 - Edição: Volume 30, Nº 33 (2024)
 - Páginas: 2631-2642
 - Seção: Immunology, Inflammation & Allergy
 - URL: https://vietnamjournal.ru/1381-6128/article/view/645933
 - DOI: https://doi.org/10.2174/0113816128309071240626114308
 - ID: 645933
 
Citar
Texto integral
Resumo
Background:Chronic Myeloid Leukemia (CML) is a rare myeloproliferative disease in childhood. Treatment in CML includes Tyrosine Kinase Inhibitors (TKIs), which inhibit the cytoplasmic kinase BCR/ABL. Tyrosine kinases play a key role in the secretion of growth hormone and insulin-like growth factor 1 (IGF-1).
Objective:The aim of this systematic review was to study the effect of TKIs on the growth of children and adolescents with CML.
Methods:English-language publications were searched in the PubMed/Cochrane library/Google Scholar databases (2002-2023), and retrieved studies were assessed according to PRISMA-Statement and Newcastle- Ottawa-scale.
Results:The search strategy yielded 1066 articles. After applying the inclusion/exclusion criteria, 941 were excluded based on title screening and 111 on abstract review. The systematic review included 14 articles (11 retrospective observational studies/3 clinical trials). Twelve studies reported data on the prevalence of growth disorders after the administration of 1st generation TKIs (imatinib). Two studies reported a negative effect of 2nd generation TKIs (dasatinib/nilotinib) on physical growth. Four studies recorded a decrease in height z-score after treatment compared to baseline. Two 1st-generation TKIs studies reported data on children's final height; one reported restoration of final height to normal after the onset of puberty, despite initial slowing, and the final height was lower than mid-parental target height. Serum IGF-1 levels were reported in 2 studies to be within normal range, while in 3 studies, a significant decrease was documented. Considerable study heterogeneity was observed related to dosage/duration of treatment/disease phase/stage of puberty/ethnicity.
Conclusion:A negative effect of TKIs on the growth and final height of children was noted.
Palavras-chave
Sobre autores
Dimitra Katsarou
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
														Email: info@benthamscience.net
				                					                																			                												                														
Eleni Kotanidou
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
														Email: info@benthamscience.net
				                					                																			                												                														
Vasiliki Tsinopoulou
2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital,, Aristotle University of Thessaloniki
														Email: info@benthamscience.net
				                					                																			                												                														
Athanasios Tragiannidis
2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital,, Aristotle University of Thessaloniki
														Email: info@benthamscience.net
				                					                																			                												                														
Emmanouil Hatzipantelis
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
														Email: info@benthamscience.net
				                					                																			                												                														
Assimina Galli-Tsinopoulou
Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki
							Autor responsável pela correspondência
							Email: info@benthamscience.net
				                					                																			                												                														
Bibliografia
- Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: A model disease of the past, present and future. Cells 2021; 10(1): 117. doi: 10.3390/cells10010117 PMID: 33435150
 - Ford M, Mauro M, Aftandilian C, Sakamoto KM, Hijiya N. Management of chronic myeloid leukemia in children and young adults. Curr Hematol Malig Rep 2022; 17(5): 121-6. doi: 10.1007/s11899-022-00673-5 PMID: 35920965
 - Robertson HF, Apperley JF. Treatment of CML in pregnancy. Hematology 2022; 2022(1): 123-8. doi: 10.1182/hematology.2022000330 PMID: 36485083
 - Wang Y, Jiang L, Li B, Zhao Y. Management of chronic myeloid leukemia and pregnancy: A bibliometric analysis (2000-2020). Front Oncol 2022; 12: 826703. doi: 10.3389/fonc.2022.826703 PMID: 35321439
 - Zhou T, Medeiros LJ, Hu S. Chronic myeloid leukemia: Beyond BCR-ABL1. Curr Hematol Malig Rep 2018; 13(6): 435-45. doi: 10.1007/s11899-018-0474-6 PMID: 30370478
 - Ali MAM. chronic myeloid leukemia in the era of tyrosine kinase inhibitors: An evolving paradigm of molecularly targeted therapy. Mol Diagn Ther 2016; 20(4): 315-33. doi: 10.1007/s40291-016-0208-1 PMID: 27220498
 - Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia chromosome-positive leukemia in the lymphoid lineage similarities and differences with the myeloid lineage and specific vulnerabilities. Int J Mol Sci 2020; 21(16): 5776. doi: 10.3390/ijms21165776 PMID: 32806528
 - Sattlermc M, Griffin JD. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol 2003; 40(2) (Suppl. 2): 4-10. doi: 10.1053/shem.2003.50034 PMID: 12783368
 - Smith SM, Hijiya N, Sakamoto KM. Chronic myelogenous leukemia in childhood. Curr Oncol Rep 2021; 23(4): 40. doi: 10.1007/s11912-021-01025-x PMID: 33718985
 - Suttorp M, Claviez A, Bader P, et al. Allogeneic stem cell transplantation for pediatric and adolescent patients with CML: Results from the prospective trial CML-paed I. Klin Padiatr 2009; 221(6): 351-7. doi: 10.1055/s-0029-1239529 PMID: 19890786
 - Yang K, Fu L. Mechanisms of resistance to BCRABL TKIs and the therapeutic strategies: A review. Crit Rev Oncol Hematol 2015; 93(3): 277-92. doi: 10.1016/j.critrevonc.2014.11.001 PMID: 25500000
 - Li C, Wen L, Dong J, et al. Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review. Front Oncol 2022; 12: 1072806. doi: 10.3389/fonc.2022.1072806 PMID: 36561525
 - Cortes J, Pavlovsky C, Saußele S. Chronic myeloid leukaemia. Lancet 2021; 398(10314): 1914-26. doi: 10.1016/S0140-6736(21)01204-6 PMID: 34425075
 - Chen Y, Wang H, Kantarjian H, Cortes J. Trends in chronic myeloid leukemia incidence and survival in the United States from 1975 to 2009. Leuk Lymphoma 2013; 54(7): 1411-7. doi: 10.3109/10428194.2012.745525 PMID: 23121646
 - Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34(4): 966-84. doi: 10.1038/s41375-020-0776-2 PMID: 32127639
 - Sembill S, Ampatzidou M, Chaudhury S, et al. Management of children and adolescents with chronic myeloid leukemia in blast phase: International pediatric CML expert panel recommendations. Leukemia 2023; 37(3): 505-17. doi: 10.1038/s41375-023-01822-2 PMID: 36707619
 - Muramatsu H, Takahashi Y, Sakaguchi H, et al. Excellent outcomes of children with CML treated with imatinib mesylate compared to that in pre-imatinib era. Int J Hematol 2011; 93(2): 186-91. doi: 10.1007/s12185-010-0764-9 PMID: 21234820
 - US Food & Drug Administration (FDA). Glivec. Summary of product characteristics. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021588s024lbl.pdf (2021 Jun 19).
 - European Medicines Agency (EMEA). Glivec. Summary of product characteristics. 2021. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/glivec
 - Gore L, Kearns PR, de Martino ML, et al. Dasatinib in pediatric patients with chronic myeloid leukemia in chronic phase: Results from a phase II trial. J Clin Oncol 2018; 36(13): 1330-8. doi: 10.1200/JCO.2017.75.9597 PMID: 29498925
 - Larson RA, Yin OQP, Hochhaus A, et al. Population pharmacokinetic and exposure-response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur J Clin Pharmacol 2012; 68(5): 723-33. doi: 10.1007/s00228-011-1200-7 PMID: 22207416
 - Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res 2010; 184: 83-102. doi: 10.1007/978-3-642-01222-8_7 PMID: 20072833
 - McCafferty EH, Dhillon S, Deeks ED. Dasatinib: A review in pediatric chronic myeloid leukemia. Paediatr Drugs 2018; 20(6): 593-600. doi: 10.1007/s40272-018-0319-8 PMID: 30465234
 - US Food & Drug Administration (FDA). Tasigna. Summary of product characteristics. 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022068s004s005lbl.pdf
 - European Medicines Agency (EMEA). Tasigna. Summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/productinformation/tasignaeparproductinformation_en.pdf (2021 Apr 8.).
 - Karadaş N, Göktepe ŞŞÖ, Baş İ, et al. Current childhood chronic myeloid leukemia management under tyrosine kinase inhibitor treatment. Int J Hematol 2023; 117(3): 446-55. doi: 10.1007/s12185-022-03497-4 PMID: 36401784
 - Hijiya N, Millot F, Suttorp M. Chronic myeloid leukemia in children: Clinical findings, management, and unanswered questions. Pediatr Clin North Am 2015; 62(1): 107-19. doi: 10.1016/j.pcl.2014.09.008 PMID: 25435115
 - Sun LR, Wang LZ, Zhong R, Zhao YX, Sun Y. Tyrosine kinase inhibitors for pediatric leukemia: History and current status. Discov Med 2022; 33(169): 93-9. PMID: 36274227
 - Ampatzidou M, Papadhimitriou SI, Goussetis E, Panagiotou JP, Papadakis V, Polychronopoulou S. Chronic myeloid leukemia (CML) in children: Classical and newer therapeutic approaches. Pediatr Hematol Oncol 2012; 29(5): 389-94. doi: 10.3109/08880018.2012.691946 PMID: 22690835
 - Madabhavi I, Patel A, Modi G, Anand A, Panchal H, Parikh S. Pediatric chronic myeloid leukemia: A single-center experience. J Cancer Res Ther 2020; 16(1): 110-5. doi: 10.4103/jcrt.JCRT_833_15 PMID: 32362619
 - Millot F, Traore P, Guilhot J, et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics 2005; 116(1): 140-3. doi: 10.1542/peds.2004-2473 PMID: 15995044
 - Hijiya N, Schultz KR, Metzler M, Millot F, Suttorp M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood 2016; 127(4): 392-9. doi: 10.1182/blood-2015-06-648667 PMID: 26511135
 - Castagnetti F, Gugliotta G, Baccarani M, et al. Differences among young adults, adults and elderly chronic myeloid leukemia patients. Ann Oncol 2015; 26(1): 185-92. doi: 10.1093/annonc/mdu490 PMID: 25361995
 - Moschovi M, Kelaidi C. Chronic myeloid leukemia in children and adolescents: The achilles heel of oncogenesis and tyrosine kinase inhibitors. Int J Mol Sci 2021; 22(15): 7806. doi: 10.3390/ijms22157806 PMID: 34360571
 - Bakhshi S, Pushpam D. Paediatric chronic myeloid leukaemia: Is it really a different disease? Indian J Med Res 2019; 149(5): 600-9. doi: 10.4103/ijmr.IJMR_331_19 PMID: 31417027
 - Barr RD. Imatinib mesylate in children and adolescents with cancer. Pediatr Blood Cancer 2010; 55(1): 18-25. doi: 10.1002/pbc.22484 PMID: 20486169
 - Champagne MA, Capdeville R, Krailo M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: Results from a Childrens Oncology Group phase 1 study. Blood 2004; 104(9): 2655-60. doi: 10.1182/blood-2003-09-3032 PMID: 15231574
 - Suttorp M, Schulze P, Glauche I, et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: Results from a phase III trial. Leukemia 2018; 32(7): 1657-69. doi: 10.1038/s41375-018-0179-9 PMID: 29925908
 - European Medicines Agency (EMEA). Sprycel. Summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/productinformation/spryceleparproductinformation_en.pdf (2021 Apr 8).
 - US Food & Drug Administration (FDA). Sprycel. Summary of product characteristics. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021986s020lbl.pdf (2021 Jun 19).
 - Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs. imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30(5): 1044-54. doi: 10.1038/leu.2016.5 PMID: 26837842
 - Suttorp M, Yaniv I, Schultz KR. Controversies in the treatment of CML in children and adolescents: TKIs versus BMT? Biol Blood Marrow Transplant 2011; 17(1) (Suppl.): S115-22. doi: 10.1016/j.bbmt.2010.09.003 PMID: 21195300
 - Hijiya N, Suttorp M. How I treat chronic myeloid leukemia in children and adolescents. Blood 2019; 133(22): 2374-84. doi: 10.1182/blood.2018882233 PMID: 30917954
 - Hijiya N, Maschan A, Rizzari C, et al. Phase 2 study of nilotinib in pediatric patients with Philadelphia chromosomepositive chronic myeloid leukemia. Blood 2019; 134(23): 2036-45. doi: 10.1182/blood.2019000069 PMID: 31511239
 - Carofiglio F, Lopalco A, Lopedota A, et al. Bcr-Abl tyrosine kinase inhibitors in the treatment of pediatric CML. Int J Mol Sci 2020; 21(12): 4469. doi: 10.3390/ijms21124469 PMID: 32586039
 - Chemaitilly W, Sklar CA. Childhood cancer treatments and associated endocrine late effects: A concise guide for the pediatric endocrinologist. Horm Res Paediatr 2019; 91(2): 74-82. doi: 10.1159/000493943 PMID: 30404091
 - Sarkis-Onofre R, Catalá-López F, Aromataris E, Lockwood C. How to properly use the PRISMA Statement. Syst Rev 2021; 10(1): 117. doi: 10.1186/s13643-021-01671-z PMID: 33875004
 - Rethlefsen ML, Kirtley S, Waffenschmidt S, et al. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev 2021; 10(1): 39. doi: 10.1186/s13643-020-01542-z PMID: 33499930
 - Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann Intern Med 2015; 162(11): 777-84. doi: 10.7326/M14-2385 PMID: 26030634
 - Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J Clin Epidemiol 2009; 62(10): e1-e34. doi: 10.1016/j.jclinepi.2009.06.006 PMID: 19631507
 - Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009; 339(jul21 1): b2535. doi: 10.1136/bmj.b2535
 - Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 2021; 134: 178-89. doi: 10.1016/j.jclinepi.2021.03.001 PMID: 33789819
 - Bansal D, Shava U, Varma N, Trehan A, Marwaha RK. Imatinib has adverse effect on growth in children with chronic myeloid leukemia. Pediatr Blood Cancer 2012; 59(3): 481-4. doi: 10.1002/pbc.23389 PMID: 22052850
 - Boddu D, Thankamony P, Guruprasad CS, Nair M, Rajeswari B, Seetharam S. Effect of imatinib on growth in children with chronic myeloid leukemia. Pediatr Hematol Oncol 2019; 36(4): 189-97. doi: 10.1080/08880018.2019.1610119 PMID: 31298597
 - Cai Y, Liu C, Guo Y, et al. Long-term safety and efficacy of imatinib in pediatric patients with chronic myeloid leukemia: Single- center experience from China. Int J Hematol 2021; 113(3): 413-21. doi: 10.1007/s12185-020-03042-1 PMID: 33386594
 - Choeyprasert W, Yansomdet T, Natesirinilkul R, Wejaphikul K, Charoenkwan P. Adverse effects of imatinib in children with chronic myelogenous leukemia. Pediatr Int 2017; 59(3): 286-92. doi: 10.1111/ped.13136 PMID: 27541072
 - Millot F, Guilhot J, Baruchel A, et al. Growth deceleration in children treated with imatinib for chronic myeloid leukaemia. Eur J Cancer 2014; 50(18): 3206-11. doi: 10.1016/j.ejca.2014.10.007 PMID: 25459396
 - Narayanan KR, Bansal D, Walia R, et al. Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer 2013; 60(7): 1148-53. doi: 10.1002/pbc.24397 PMID: 23322583
 - Rastogi MV, Stork L, Druker B, Blasdel C, Nguyen T, Boston BA. Imatinib mesylate causes growth deceleration in pediatric patients with chronic myelogenous leukemia. Pediatr Blood Cancer 2012; 59(5): 840-5. doi: 10.1002/pbc.24121 PMID: 22378641
 - Shima H, Tokuyama M, Tanizawa A, et al. Distinct impact of imatinib on growth at prepubertal and pubertal ages of children with chronic myeloid leukemia. J Pediatr 2011; 159(4): 676-81. doi: 10.1016/j.jpeds.2011.03.046 PMID: 21592517
 - Ulmer A, Tabea Tauer J, Glauche I, Jung R, Suttorp M. TK inhibitor treatment disrupts growth hormone axis: Clinical observations in children with CML and experimental data from a juvenile animal model. Klin Padiatr 2013; 225(3): 120-6. doi: 10.1055/s-0033-1343483 PMID: 23716272
 - Walia R, Aggarwal A, Bhansali A, et al. Acquired neuro-secretory defect in growth hormone secretion due to Imatinib mesylate and the efficacy of growth hormone therapy in children with chronic myeloid leukemia. Pediatr Hematol Oncol 2020; 37(2): 99-108. doi: 10.1080/08880018.2019.1689320 PMID: 31747806
 - Zheng YZ, Li J, Chen C, Zheng H, Fu DH, Hu JD. Long-term outcome of tyrosine kinase inhibitor treatment in children and adolescents with newly diagnosed chronic myeloid leukemia in chronic phase. Chin Med J 2021; 134(24): 3009-11. doi: 10.1097/CM9.0000000000001656 PMID: 34310396
 - Hijiya N, Maschan A, Rizzari C, et al. A phase 2 study of nilotinib in pediatric patients with CML: Long-term update on growth retardation and safety. Blood Adv 2021; 5(14): 2925-34. doi: 10.1182/bloodadvances.2020003759 PMID: 34309636
 - Kimoto T, Inoue M, Kawa K. Growth deceleration in a girl treated with imatinib. Int J Hematol 2009; 89(2): 251-2. doi: 10.1007/s12185-008-0251-8 PMID: 19152100
 - Kebapcilar L, Bilgir O, Alacacioglu I, et al. Does imatinib mesylate therapy cause growth hormone deficiency? Med Princ Pract 2009; 18(5): 360-3. doi: 10.1159/000226288 PMID: 19648757
 - Schmid H, Jaeger BAS, Lohse J, Suttorp M. Longitudinal growth retardation in a prepuberal girl with chronic myeloid leukemia on long-term treatment with imatinib. Haematologica 2009; 94(8): 1177-9. doi: 10.3324/haematol.2009.008359 PMID: 19546438
 - Werner H. The IGF1 signaling pathway: From basic concepts to therapeutic opportunities. Int J Mol Sci 2023; 24(19): 14882. doi: 10.3390/ijms241914882 PMID: 37834331
 - Bouillon R. Growth hormone and bone. Horm Res 1991; 36(1): 49-55. doi: 10.1159/000182189 PMID: 1806485
 - Niwczyk O, Grymowicz M, Szczęsnowicz A, et al. Bones and hormones: Interaction between hormones of the hypothalamus, pituitary, adipose tissue and bone. Int J Mol Sci 2023; 24(7): 6840. doi: 10.3390/ijms24076840 PMID: 37047811
 - Brooks AJ, Waters MJ. The growth hormone receptor: Mechanism of activation and clinical implications. Nat Rev Endocrinol 2010; 6(9): 515-25. doi: 10.1038/nrendo.2010.123 PMID: 20664532
 - Lodish MB. Clinical review: Kinase inhibitors: Adverse effects related to the endocrine system. J Clin Endocrinol Metab 2013; 98(4): 1333-42. doi: 10.1210/jc.2012-4085 PMID: 23450053
 - Gupta P, Banothu KK, Haldar P, Gupta AK, Meena JP. Effect of imatinib mesylate on growth in pediatric chronic myeloid leukemia: A systematic review and meta-analysis. J Pediatr Hematol Oncol 2023; 45(5): 227-34. doi: 10.1097/MPH.0000000000002660 PMID: 37027248
 - Chulani VL, Gordon LP. Adolescent growth and development. Prim Care 2014; 41(3): 465-87. doi: 10.1016/j.pop.2014.05.002 PMID: 25124201
 - Berenbaum SA, Beltz AM, Corley R. The importance of puberty for adolescent development: Conceptualization and measurement. Adv Child Dev Behav 2015; 48: 53-92. doi: 10.1016/bs.acdb.2014.11.002 PMID: 25735941
 - Cameron JL. Interrelationships between hormones, behavior, and affect during adolescence: Understanding hormonal, physical, and brain changes occurring in association with pubertal activation of the reproductive axis. Introduction to part III. Ann N Y Acad Sci 2004; 1021(1): 110-23. doi: 10.1196/annals.1308.012 PMID: 15251880
 - Remschmidt H. Psychosocial milestones in normal puberty and adolescence. Horm Res 1994; 41(2): 19-29. doi: 10.1159/000183955 PMID: 8088699
 - Cronau H, Brown RT. Growth and development: Physical, mental, and social aspects. Prim Care 1998; 25(1): 23-45. doi: 10.1016/S0095-4543(05)70324-9 PMID: 9469915
 - Pinyerd B, Zipf WB. Puberty-timing is everything! J Pediatr Nurs 2005; 20(2): 75-82. doi: 10.1016/j.pedn.2004.12.011 PMID: 15815567
 - Giona F, Mariani S, Gnessi L, et al. Bone metabolism, growth rate and pubertal development in children with chronic myeloid leukemia treated with imatinib during puberty. Haematologica 2013; 98(3): e25-7. doi: 10.3324/haematol.2012.067447 PMID: 22983586
 - Hobernicht SL, Schweiger B, Zeitler P, Wang M, Hunger SP. Acquired growth hormone deficiency in a girl with chronic myelogenous leukemia treated with tyrosine kinase inhibitor therapy. Pediatr Blood Cancer 2011; 56(4): 671-3. doi: 10.1002/pbc.22945 PMID: 21298759
 - Mariani S, Giona F, Basciani S, Brama M, Gnessi L. Low bone density and decreased inhibin-B/FSH ratio in a boy treated with imatinib during puberty. Lancet 2008; 372(9633): 111-2. doi: 10.1016/S0140-6736(08)61023-5 PMID: 18620939
 - Ibba A, Loche S. Diagnosis of GH deficiency without GH stimulation tests. Front Endocrinol 2022; 13: 853290. doi: 10.3389/fendo.2022.853290 PMID: 35250894
 - OSullivan S, Naot D, Callon K, et al. Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J Bone Miner Res 2007; 22(11): 1679-89. doi: 10.1359/jbmr.070719 PMID: 17663639
 - Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino ACW. Dysregulation of bone remodeling by imatinib mesylate. Blood 2010; 115(4): 766-74. doi: 10.1182/blood-2009-08-237404 PMID: 19890095
 - Vandyke K, Dewar AL, Fitter S, et al. Imatinib mesylate causes growth plate closure in vivo. Leukemia 2009; 23(11): 2155-9. doi: 10.1038/leu.2009.150 PMID: 19626049
 - Samis J, Lee P, Zimmerman D, Arceci RJ, Suttorp M, Hijiya N. Recognizing endocrinopathies associated with tyrosine kinase inhibitor therapy in children with chronic myelogenous leukemia. Pediatr Blood Cancer 2016; 63(8): 1332-8. doi: 10.1002/pbc.26028 PMID: 27100618
 - Zatelli MC, Ambrosio MR, Bondanelli M, degli Uberti E. Pituitary side effects of old and new drugs. J Endocrinol Invest 2014; 37(10): 917-23. doi: 10.1007/s40618-014-0133-2 PMID: 25070042
 - Suttorp M, Millot F. Treatment of pediatric chronic myeloid leukemia in the year 2010: Use of tyrosine kinase inhibitors and stem-cell transplantation. Hematology 2010; 2010(1): 368-76. doi: 10.1182/asheducation-2010.1.368 PMID: 21239821
 - Pushpam D, Bakhshi S. Pharmacology of tyrosine kinase inhibitors in chronic myeloid leukemia; A clinicians perspective. Daru 2020; 28(1): 371-85. doi: 10.1007/s40199-019-00321-z PMID: 31900888
 - Brown RL. Tyrosine kinase inhibitor-induced hypothyroidism: Incidence, etiology, and management. Target Oncol 2011; 6(4): 217-26. doi: 10.1007/s11523-011-0197-2 PMID: 22101606
 - Basolo A, Matrone A, Elisei R, Santini F. Effects of tyrosine kinase inhibitors on thyroid function and thyroid hormone metabolism. Semin Cancer Biol 2022; 79: 197-202. doi: 10.1016/j.semcancer.2020.12.008 PMID: 33476722
 - Patel S, Nayernama A, Jones SC, de Claro RA, Waldron PE. BCR-ABL1 tyrosine kinase inhibitor-associated thyroid dysfunction: A review of cases reported to the FDA Adverse Event Reporting System and published in the literature. Am J Hematol 2020; 95(12): E332-5. doi: 10.1002/ajh.25997 PMID: 32918288
 - Torino F, Corsello SM, Longo R, Barnabei A, Gasparini G. Hypothyroidism related to tyrosine kinase inhibitors: An emerging toxic effect of targeted therapy. Nat Rev Clin Oncol 2009; 6(4): 219-28. doi: 10.1038/nrclinonc.2009.4 PMID: 19333228
 - Kim TD, Schwarz M, Nogai H, et al. Thyroid dysfunction caused by second-generation tyrosine kinase inhibitors in Philadelphia chromosome-positive chronic myeloid leukemia. Thyroid 2010; 20(11): 1209-14. doi: 10.1089/thy.2010.0251 PMID: 20929406
 - Berman E, Nicolaides M, Maki RG, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006; 354(19): 2006-13. doi: 10.1056/NEJMoa051140 PMID: 16687713
 - OSullivan S, Horne A, Wattie D, et al. Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 2009; 94(4): 1131-6. doi: 10.1210/jc.2008-2324 PMID: 19174494
 
Arquivos suplementares
				
			
						
						
						
					
						
									