Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review


Cite item

Full Text

Abstract

Introduction:This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels.

Objective:We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors.

Methods:This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation.

Results:The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue.

Conclusion:The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.

About the authors

Evgenii Gusev

Laboratory of Inflammation Immunology, Institute of Immunology and Physiology,, Ural Branch of the Russian Academy of Science,

Author for correspondence.
Email: info@benthamscience.net

Alexey Sarapultsev

Russian-Chinese Education and Research Center of System Pathology, South Ural State University,

Email: info@benthamscience.net

References

  1. Tian F, Shen Q, Hu Y, et al. Association of stress-related disorders with subsequent risk of all-cause and cause-specific mortality: A population-based and sibling-controlled cohort study. Lancet Reg Health Eur 2022; 18: 100402. doi: 10.1016/j.lanepe.2022.100402 PMID: 35663363
  2. Yang L, Zhao Y, Wang Y, et al. The effects of psychological stress on depression. Curr Neuropharmacol 2015; 13(4): 494-504. doi: 10.2174/1570159X1304150831150507 PMID: 26412069
  3. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002; 34(1): 13-25. doi: 10.1016/S0896-6273(02)00653-0 PMID: 11931738
  4. Lou H, Liu X, Liu P. Mechanism and implications of pro-nature physical activity in antagonizing psychological stress: The key role of microbial-gut-brain axis. Front Psychol 2023; 14: 1143827. doi: 10.3389/fpsyg.2023.1143827 PMID: 37560094
  5. Umriukhin PE, Ershova ES, Filev AD, et al. The psychoemotional stress-induced changes in the abundance of SatIII (1q12) and telomere repeats, but not ribosomal DNA, in human leukocytes. Genes (Basel) 2022; 13(2): 343. doi: 10.3390/genes13020343 PMID: 35205387
  6. Sara JDS, Toya T, Ahmad A, et al. Mental stress and its effects on vascular health. Mayo Clin Proc 2022; 97(5): 951-90. doi: 10.1016/j.mayocp.2022.02.004 PMID: 35512885
  7. Goldstein DS. Stress and the autonomic nervous system. Auton Neurosci 2023; 247: 103096. doi: 10.1016/j.autneu.2023.103096 PMID: 37257231
  8. Kivimäki M, Bartolomucci A, Kawachi I. The multiple roles of life stress in metabolic disorders. Nat Rev Endocrinol 2023; 19(1): 10-27. doi: 10.1038/s41574-022-00746-8 PMID: 36224493
  9. Schneider KM, Blank N, Alvarez Y, et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 2023; 186(13): 2823-2838.e20. doi: 10.1016/j.cell.2023.05.001 PMID: 37236193
  10. Mishra R, Pandey P, Khan F. Unravelling the influence of nutrition and mental stress on immune response. Endocr Metab Immune Disord Drug Targets 2023; 23(4): 423-7. doi: 10.2174/1871530322666220928143601 PMID: 36173043
  11. Sonino N, Fava GA, Lucente M, Guidi J. Allostatic load and endocrine disorders. Psychother Psychosom 2023; 92(3): 162-9. doi: 10.1159/000530691 PMID: 37253338
  12. Song H, Sieurin J, Wirdefeldt K, et al. Association of stress-related disorders with subsequent neurodegenerative diseases. JAMA Neurol 2020; 77(6): 700-9. doi: 10.1001/jamaneurol.2020.0117 PMID: 32150226
  13. Obuobi-Donkor G, Nkire N, Agyapong VIO. Prevalence of major depressive disorder and correlates of thoughts of death, suicidal behaviour, and death by suicide in the geriatric population-a general review of literature. Behav Sci 2021; 11(11): 142. doi: 10.3390/bs11110142 PMID: 34821603
  14. Levin R, Nielsen TA. Disturbed dreaming, posttraumatic stress disorder, and affect distress: A review and neurocognitive model. Psychol Bull 2007; 133(3): 482-528. doi: 10.1037/0033-2909.133.3.482 PMID: 17469988
  15. Marchand A, Drapeau A, Beaulieu-Prévost D. Psychological distress in Canada: The role of employment and reasons of non-employment. Int J Soc Psychiatry 2012; 58(6): 596-604. doi: 10.1177/0020764011418404 PMID: 21873292
  16. Delassalle N, Cavaciuti M. Psychological distress and COVID-19. Dimens Crit Care Nurs 2023; 42(2): 53-62. doi: 10.1097/DCC.0000000000000565 PMID: 36720029
  17. Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: A review. Eur J Neurosci 2021; 53(1): 151-71. doi: 10.1111/ejn.14720 PMID: 32150310
  18. Pandya M, Altinay M, Malone DA Jr, Anand A. Where in the brain is depression? Curr Psychiatry Rep 2012; 14(6): 634-42. doi: 10.1007/s11920-012-0322-7 PMID: 23055003
  19. Zhang Y, Yang Y, Zhu L, et al. Volumetric deficit within the fronto-limbic-striatal circuit in first-episode drug naïve patients with major depression disorder. Front Psychiatry 2021; 11: 600583. doi: 10.3389/fpsyt.2020.600583 PMID: 33551870
  20. Jiang Y, Zou D, Li Y, et al. Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals 2022; 15(10): 1203. doi: 10.3390/ph15101203 PMID: 36297314
  21. Pitsillou E, Bresnehan SM, Kagarakis EA, et al. The cellular and molecular basis of major depressive disorder: Towards a unified model for understanding clinical depression. Mol Biol Rep 2020; 47(1): 753-70. doi: 10.1007/s11033-019-05129-3 PMID: 31612411
  22. Pelletier M, Siegel RM. Wishing away inflammation? New links between serotonin and TNF signaling. Mol Interv 2009; 9(6): 299-301. doi: 10.1124/mi.9.6.5 PMID: 20048135
  23. Correia AS, Cardoso A, Vale N. Highlighting immune system and stress in major depressive disorder, Parkinson’s, and Alzheimer’s diseases, with a connection with serotonin. Int J Mol Sci 2021; 22(16): 8525. doi: 10.3390/ijms22168525 PMID: 34445231
  24. Gusev EY, Zotova NV. Cellular stress and general pathological processes. Curr Pharm Des 2019; 25(3): 251-97. doi: 10.2174/1381612825666190319114641 PMID: 31198111
  25. Gusev E, Zhuravleva Y. Inflammation: A new look at an old problem. Int J Mol Sci 2022; 23(9): 4596. doi: 10.3390/ijms23094596 PMID: 35562986
  26. Kumar V, Yasmeen N, Chaudhary AA, et al. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10: 1104577. doi: 10.3389/fmolb.2023.1104577 PMID: 36825200
  27. AlZahrani S, Shinwari Z, Gaafar A, Alaiya A, Al-Kahtani A. Anti-inflammatory effect of specialized proresolving lipid mediators on mesenchymal stem cells: An in vitro study. Cells 2022; 12(1): 122. doi: 10.3390/cells12010122 PMID: 36611915
  28. Perretti M, Dalli J. Resolution pharmacology: Focus on pro-resolving annexin A1 and lipid mediators for therapeutic innovation in inflammation. Annu Rev Pharmacol Toxicol 2023; 63(1): 449-69. doi: 10.1146/annurev-pharmtox-051821-042743 PMID: 36151051
  29. Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol 2003; 27(6-7): 449-64. doi: 10.1016/S0145-305X(02)00160-X PMID: 12697304
  30. Lanz-Mendoza H, Contreras-Garduño J. Innate immune memory in invertebrates: Concept and potential mechanisms. Dev Comp Immunol 2022; 127: 104285. doi: 10.1016/j.dci.2021.104285 PMID: 34626688
  31. Rowley AF. The evolution of inflammatory mediators. Mediators Inflamm 1996; 5(1): 3-13. doi: 10.1155/S0962935196000014 PMID: 18475690
  32. Jiravanichpaisal P, Söderhäll K, Söderhäll I. Inflammation in arthropods. Curr Pharm Des 2010; 16(38): 4166-74. doi: 10.2174/138161210794519165 PMID: 21184661
  33. La Corte C, Baranzini N, Grimaldi A, Parisi MG. Invertebrate models in innate immunity and tissue remodeling research. Int J Mol Sci 2022; 23(12): 6843. doi: 10.3390/ijms23126843 PMID: 35743284
  34. Gusev EY, Zhuravleva YA, Zotova NV. Correlation of the evolution of immunity and inflammation in vertebrates. Biol Bull Rev 2019; 9(4): 358-72. doi: 10.1134/S2079086419040029
  35. Montali RJ. Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals). J Comp Pathol 1988; 99(1): 1-26. doi: 10.1016/0021-9975(88)90101-6 PMID: 3062051
  36. Zotova N, Zhuravleva Y, Chereshnev V, Gusev E. Acute and chronic systemic inflammation: Features and differences in the pathogenesis, and integral criteria for verification and differentiation. Int J Mol Sci 2023; 24(2): 1144. doi: 10.3390/ijms24021144 PMID: 36674657
  37. Brazhnikov A, Zotova N, Solomatina L, Sarapultsev A, Spirin A, Gusev E. Shock-associated systemic inflammation in amniotic fluid embolism, complicated by clinical death. Pathophysiology 2023; 30(1): 48-62. doi: 10.3390/pathophysiology30010006 PMID: 36976733
  38. Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS- CoV-2-specific immune response and the pathogenesis of COVID-19. Int J Mol Sci 2022; 23(3): 1716. doi: 10.3390/ijms23031716 PMID: 35163638
  39. Qu L, Matz AJ, Karlinsey K, Cao Z, Vella AT, Zhou B. Macrophages at the crossroad of meta-inflammation and inflammaging. Genes 2022; 13(11): 2074. doi: 10.3390/genes13112074 PMID: 36360310
  40. Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20. doi: 10.1097/MCO.0b013e32835ada13 PMID: 23132168
  41. Songkiatisak P, Rahman SMT, Aqdas M, Sung MH. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun Ageing 2022; 19(1): 20. doi: 10.1186/s12979-022-00277-w PMID: 35581646
  42. Johnston EK, Abbott RD. Adipose tissue paracrine-, autocrine-, and matrix-dependent signaling during the development and progression of obesity. Cells 2023; 12(3): 407. doi: 10.3390/cells12030407 PMID: 36766750
  43. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009; 2(5-6): 231-7. doi: 10.1242/dmm.001180 PMID: 19407331
  44. Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244: 108372. doi: 10.1016/j.pharmthera.2023.108372 PMID: 36894027
  45. Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9. doi: 10.15420/ecr.2018.33.1 PMID: 31131037
  46. Tao Q, Ang TFA, DeCarli C, et al. Association of chronic low- grade inflammation with risk of alzheimer disease in ApoE4 carriers. JAMA Netw Open 2018; 1(6): e183597. doi: 10.1001/jamanetworkopen.2018.3597 PMID: 30646251
  47. Walker KA. Inflammation and neurodegeneration: Chronicity matters. Aging 2018; 11(1): 3-4. doi: 10.18632/aging.101704 PMID: 30554190
  48. Kaur G, Singh NK. The role of inflammation in retinal neurodegeneration and degenerative diseases. Int J Mol Sci 2021; 23(1): 386. doi: 10.3390/ijms23010386 PMID: 35008812
  49. Xie J, Gorlé N, Vandendriessche C, et al. Low-grade peripheral inflammation affects brain pathology in the AppNL-G-Fmouse model of Alzheimer’s disease. Acta Neuropathol Commun 2021; 9(1): 163. doi: 10.1186/s40478-021-01253-z PMID: 34620254
  50. Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. Int J Mol Sci 2021; 22(21): 11453. doi: 10.3390/ijms222111453 PMID: 34768884
  51. Gusev E, Sarapultsev A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int J Mol Sci 2023; 24(9): 7910. doi: 10.3390/ijms24097910 PMID: 37175617
  52. Lan T, Chen L, Wei X. Inflammatory cytokines in cancer: Comprehensive understanding and clinical progress in gene therapy. Cells 2021; 10(1): 100. doi: 10.3390/cells10010100 PMID: 33429846
  53. Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100(3): 481-9. doi: 10.1189/jlb.3RU0316-144R PMID: 27354413
  54. Robertson SA, Chin PY, Femia JG, Brown HM. Embryotoxic cytokines-Potential roles in embryo loss and fetal programming. J Reprod Immunol 2018; 125: 80-8. doi: 10.1016/j.jri.2017.12.003 PMID: 29306096
  55. Winsor N, Krustev C, Bruce J, Philpott DJ, Girardin SE. Canonical and noncanonical inflammasomes in intestinal epithelial cells. Cell Microbiol 2019; 21(11): e13079. doi: 10.1111/cmi.13079 PMID: 31265745
  56. Pomella S, Cassandri M, Antoniani F, et al. Heat shock proteins: Important helpers for the development, maintenance and regeneration of skeletal muscles. Muscles 2023; 2(2): 187-203. doi: 10.3390/muscles2020014
  57. Docherty S, Harley R, McAuley JJ, et al. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci Med Rehabil 2022; 14(1): 5. doi: 10.1186/s13102-022-00397-2 PMID: 34991697
  58. Selye H. A syndrome produced by diverse nocuous agents. 1936. J Neuropsychiatry Clin Neurosci 1998; 10(2): 230a-1. doi: 10.1176/jnp.10.2.230a PMID: 9722327
  59. Selye H. Stress and the general adaptation syndrome. BMJ 1950; 1(4667): 1383-92. doi: 10.1136/bmj.1.4667.1383 PMID: 15426759
  60. Szabo S, Tache Y, Somogyi A. The legacy of Hans Selye and the origins of stress research: A retrospective 75 years after his landmark brief "letter" to the editor of nature. Stress 2012; 15(5): 472-8.
  61. Tanguy G, Sagui E, Fabien Z, Martin-Krumm C, Canini F, Trousselard M. Anxiety and psycho-physiological stress response to competitive sport exercise. Front Psychol 2018; 9: 1469. doi: 10.3389/fpsyg.2018.01469 PMID: 30210383
  62. Selye H. The part of inflammation in the local adaptation syndrome. Rev Can Biol 1953; 12(2): 155-75. PMID: 13121623
  63. Szabo S. The post-COVID stress syndrome: From the three-stage stress response of Hans Selye to COVID-19. Inflammopharmacology 2023; 1-8. doi: 10.1007/s10787-023-01179-z PMID: 37184668
  64. Balk RA. Systemic inflammatory response syndrome (SIRS). Virulence 2014; 5(1): 20-6. doi: 10.4161/viru.27135 PMID: 24280933
  65. Kellner R. Psychosomatic syndromes, somatization and somatoform disorders. Psychother Psychosom 1994; 61(1-2): 4-24. doi: 10.1159/000288868 PMID: 8121976
  66. Capitanio JP. Personality and disease. Brain Behav Immun 2008; 22(5): 647-50. doi: 10.1016/j.bbi.2008.02.002 PMID: 18375097
  67. Deter HC. Bio-psycho-soziale oder psychotherapeutische Medizin – zur aktuellen Entwicklung der Psychosomatik in der klinischen Praxis. Wien Med Wochenschr 2018; 168(3-4): 52-61. doi: 10.1007/s10354-017-0582-2 PMID: 28744775
  68. Jiang C, Jiang W, Yue Y, et al. The trends of psychosomatic symptoms and perceived stress among healthcare workers during the COVID-19 pandemic in China: Four cross-sectional nationwide surveys, 2020-2023. Psychiatry Res 2023; 326: 115301. doi: 10.1016/j.psychres.2023.115301 PMID: 37390600
  69. Altamura M, D’Andrea G, Angelini E, et al. Psychosomatic syndromes are associated with IL-6 pro-inflammatory cytokine in heart failure patients. PLoS One 2022; 17(3): e0265282. doi: 10.1371/journal.pone.0265282 PMID: 35271674
  70. Hazeltine DB, Polokowski AR, Reigada LC. Inflammatory cytokines, but not dietary patterns, are related to somatic symptoms of depression in a sample of women. Front Psychiatry 2022; 13: 822466. doi: 10.3389/fpsyt.2022.822466 PMID: 35651828
  71. Lu S, Wei F, Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress 2021; 5(6): 76-85. doi: 10.15698/cst2021.06.250 PMID: 34124582
  72. Qi G, Mi Y, Yin F. Cellular specificity and inter-cellular coordination in the brain bioenergetic system: Implications for aging and neurodegeneration. Front Physiol 2020; 10: 1531. doi: 10.3389/fphys.2019.01531 PMID: 31969828
  73. Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 2010; 30(9): 1598-607. doi: 10.1038/jcbfm.2010.49 PMID: 20407465
  74. Jelinek M, Jurajda M, Duris K. Oxidative stress in the brain: Basic concepts and treatment strategies in stroke. Antioxidants 2021; 10(12): 1886. doi: 10.3390/antiox10121886 PMID: 34942989
  75. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15: 490-503. doi: 10.1016/j.redox.2018.01.008 PMID: 29413961
  76. Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid Med Cell Longev 2019; 2019: 1-18. doi: 10.1155/2019/2105607 PMID: 31210837
  77. Armada-Moreira A, Gomes JI, Pina CC, et al. Going the extra (Synaptic) mile: Excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci 2020; 14: 90. doi: 10.3389/fncel.2020.00090 PMID: 32390802
  78. Wang S, Bian L, Yin Y, Guo J. Targeting NMDA receptors in emotional disorders: Their role in neuroprotection. Brain Sci 2022; 12(10): 1329. doi: 10.3390/brainsci12101329 PMID: 36291261
  79. Wolosker H, Balu DT. d-Serine as the gatekeeper of NMDA receptor activity: Implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 2020; 10(1): 184. doi: 10.1038/s41398-020-00870-x PMID: 32518273
  80. Ghasemi M, Phillips C, Fahimi A, McNerney MW, Salehi A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci Biobehav Rev 2017; 80: 555-72. doi: 10.1016/j.neubiorev.2017.07.002 PMID: 28711661
  81. Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci 2022; 23(11): 5954. doi: 10.3390/ijms23115954 PMID: 35682631
  82. Northrop NA, Smith LP, Yamamoto BK, Eyerman DJ. Regulation of glutamate release by α7 nicotinic receptors: Differential role in methamphetamine-induced damage to dopaminergic and serotonergic terminals. J Pharmacol Exp Ther 2011; 336(3): 900-7. doi: 10.1124/jpet.110.177287 PMID: 21159748
  83. Liu H, Zhang X, Shi P, et al. α7 Nicotinic acetylcholine receptor: A key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflamm 2023; 20(1): 84. doi: 10.1186/s12974-023-02768-z PMID: 36973813
  84. Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16(3): 137-62. doi: 10.1111/j.1755-5949.2010.00142.x PMID: 20370804
  85. Sears SMS, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med 2021; 246(9): 1069-83. doi: 10.1177/1535370221989263 PMID: 33554649
  86. Petroff OAC. GABA and glutamate in the human brain. Neuroscientist 2002; 8(6): 562-73. doi: 10.1177/1073858402238515 PMID: 12467378
  87. Czapski GA, Strosznajder JB. Glutamate and GABA in microglia-neuron cross-talk in Alzheimer’s disease. Int J Mol Sci 2021; 22(21): 11677. doi: 10.3390/ijms222111677 PMID: 34769106
  88. Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 2015; 6(1): 6807. doi: 10.1038/ncomms7807 PMID: 25904018
  89. Knottnerus SJG, Bleeker JC, Wüst RCI, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018; 19(1): 93-106. doi: 10.1007/s11154-018-9448-1 PMID: 29926323
  90. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023; 12(2): 517. doi: 10.3390/antiox12020517 PMID: 36830075
  91. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 2021; 107: 86-95. doi: 10.1016/j.neurobiolaging.2021.07.014 PMID: 34416493
  92. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5. doi: 10.1124/jpet.116.237503 PMID: 27754930
  93. Fedoce AG, Ferreira F, Bota RG, Bonet-Costa V, Sun PY, Davies KJA. The role of oxidative stress in anxiety disorder: Cause or consequence? Free Radic Res 2018; 52(7): 737-50. doi: 10.1080/10715762.2018.1475733 PMID: 29742940
  94. Correia AS, Cardoso A, Vale N. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants 2023; 12(2): 470. doi: 10.3390/antiox12020470 PMID: 36830028
  95. Fan X, Rudensky AY. Hallmarks of tissue-resident lymphocytes. Cell 2016; 164(6): 1198-211. doi: 10.1016/j.cell.2016.02.048 PMID: 26967286
  96. Hooper CS. Cell turnover in epithelial populations. J Histochem Cytochem 1956; 4(6): 531-40. doi: 10.1177/4.6.531 PMID: 13385475
  97. Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: A review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res 2020; 7(1): 30. doi: 10.1186/s40779-020-00259-3 PMID: 32527334
  98. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7(4): 278-94. doi: 10.1038/nrn1886 PMID: 16552414
  99. Fielder E, von Zglinicki T, Jurk D. The DNA damage response in neurons: Die by apoptosis or survive in a senescence-like state? J Alzheimers Dis 2017; 60(s1): S107-31. doi: 10.3233/JAD-161221 PMID: 28436392
  100. Stagni V, Ferri A, Cirotti C, Barilà D. ATM kinase-dependent regulation of autophagy: A key player in senescence? Front Cell Dev Biol 2021; 8: 599048. doi: 10.3389/fcell.2020.599048 PMID: 33490066
  101. Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 2019; 11(6): e10248. doi: 10.15252/emmm.201810248 PMID: 31015277
  102. Poh L, Sim WL, Jo DG, et al. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17(1): 4. doi: 10.1186/s13024-021-00506-8 PMID: 35000611
  103. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19(8): 983-97. doi: 10.1038/nm.3232 PMID: 23921753
  104. Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: A hunter for aggregates. Int J Mol Sci 2020; 21(9): 3369. doi: 10.3390/ijms21093369 PMID: 32397599
  105. Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci 2014; 71(15): 2787-814. doi: 10.1007/s00018-013-1550-7 PMID: 24442513
  106. Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. Int Rev Cell Mol Biol 2021; 363: 1-20. doi: 10.1016/bs.ircmb.2021.03.003 PMID: 34392927
  107. Swulius MT, Waxham MN. Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci 2008; 65(17): 2637-57. doi: 10.1007/s00018-008-8086-2 PMID: 18463790
  108. Wang YT, Li V. Molecular mechanisms of NMDA receptor-mediated excitotoxicity: Implications for neuroprotective therapeutics for stroke. Neural Regen Res 2016; 11(11): 1752-3. doi: 10.4103/1673-5374.194713 PMID: 28123410
  109. Xu LZ, Li BQ, Li FY, et al. NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in Alzheimer’s disease. J Alzheimers Dis 2023; 91(2): 877-93. doi: 10.3233/JAD-220747 PMID: 36502323
  110. Gutiérrez A, Contreras C, Sánchez A, Prieto D. Role of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC) in calcium signaling pathways linked to the α 1-adrenoceptor in resistance arteries. Front Physiol 2019; 10: 55.
  111. Daub H, Ulrich Weiss F, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379(6565): 557-60. doi: 10.1038/379557a0 PMID: 8596637
  112. Kilpatrick LE, Hill SJ. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): Recent insights using luminescence and fluorescence technologies. Curr Opin Endocr Metab Res 2021; 16: 102-12. doi: 10.1016/j.coemr.2020.10.003 PMID: 33748531
  113. Vigneswara V, Kundi S, Ahmed Z. Receptor tyrosine kinases: molecular switches regulating CNS axon regeneration. J Signal Transduct 2012; 2012: 1-14. doi: 10.1155/2012/361721 PMID: 22848811
  114. Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Aspects Med 2018; 62: 63-74. doi: 10.1016/j.mam.2018.01.006 PMID: 29409855
  115. Klimaschewski L, Claus P. Fibroblast growth factor signalling in the diseased nervous system. Mol Neurobiol 2021; 58(8): 3884-902. doi: 10.1007/s12035-021-02367-0 PMID: 33860438
  116. Ardizzone A, Scuderi SA, Giuffrida D, et al. Role of Fibroblast Growth Factors Receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma. Cancers 2020; 12(12): 3825. doi: 10.3390/cancers12123825 PMID: 33352931
  117. Stoleru B, Popescu AM, Tache DE, et al. Tropomyosin-receptor-kinases signaling in the nervous system. Maedica (Buchar) 2013; 8(1): 43-8. PMID: 24023598
  118. Ledonne A, Mercuri NB. On the Modulatory roles of neuregulins/erbb signaling on synaptic plasticity. Int J Mol Sci 2019; 21(1): 275. doi: 10.3390/ijms21010275 PMID: 31906113
  119. Romano R, Bucci C. Role of EGFR in the nervous system. Cells 2020; 9(8): 1887. doi: 10.3390/cells9081887 PMID: 32806510
  120. Werner H, LeRoith D. Insulin and insulin-like growth factor receptors in the brain: Physiological and pathological aspects. Eur Neuropsychopharmacol 2014; 24(12): 1947-53. doi: 10.1016/j.euroneuro.2014.01.020 PMID: 24529663
  121. Boczek T, Mackiewicz J, Sobolczyk M, et al. The role of G Protein-Coupled Receptors (GPCRs) and calcium signaling in schizophrenia. focus on gpcrs activated by neurotransmitters and chemokines. Cells 2021; 10(5): 1228. doi: 10.3390/cells10051228 PMID: 34067760
  122. Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol 2012; 96(3): 304-21. doi: 10.1016/j.pneurobio.2012.01.009 PMID: 22307060
  123. Yu S, Sun L, Jiao Y, Lee LTO. The role of G protein-coupled receptor kinases in cancer. Int J Biol Sci 2018; 14(2): 189-203. doi: 10.7150/ijbs.22896 PMID: 29483837
  124. Alexander SP, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br J Pharmacol 2017/18; 174(S1): S17-S129.
  125. Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: Migraine and beyond. Physiol Rev 2023; 103(2): 1565-644. doi: 10.1152/physrev.00059.2021 PMID: 36454715
  126. Mobbs JI, Belousoff MJ, Harikumar KG, et al. Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biol 2021; 19(6): e3001295. doi: 10.1371/journal.pbio.3001295 PMID: 34086670
  127. Inoue A, Raimondi F, Kadji FMN, et al. Illuminating G-protein- coupling selectivity of GPCRs. Cell 2019; 177(7): 1933-1947.e25. doi: 10.1016/j.cell.2019.04.044 PMID: 31160049
  128. de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. Gi/o-protein coupled receptors in the aging brain. Front Aging Neurosci 2019; 11: 89. doi: 10.3389/fnagi.2019.00089 PMID: 31105551
  129. Mohan ML, Vasudevan NT, Naga Prasad SV. Proinflammatory cytokines mediate GPCR dysfunction. J Cardiovasc Pharmacol 2017; 70(2): 61-73. doi: 10.1097/FJC.0000000000000456 PMID: 28763371
  130. Fan X, Jin WY, Wang YT. The NMDA receptor complex: A multifunctional machine at the glutamatergic synapse. Front Cell Neurosci 2014; 8: 160. doi: 10.3389/fncel.2014.00160 PMID: 24959120
  131. Sternweis PC, Smrcka AV. G proteins in signal transduction: The regulation of phospholipase C. Ciba Found Symp 1993; 176: 96-106. PMID: 8299429
  132. Fisher IJ, Jenkins ML, Tall GG, Burke JE, Smrcka AV. Activation of phospholipase C β by Gβγ and Gαq involves C-terminal rearrangement to release autoinhibition. Structure 2020; 28(7): 810-819.e5. doi: 10.1016/j.str.2020.04.012 PMID: 32402248
  133. Jackson L, Qifti A, Pearce KM, Scarlata S. Regulation of bifunctional proteins in cells: Lessons from the phospholipase Cβ/G protein pathway. Protein Sci 2020; 29(6): 1258-68. doi: 10.1002/pro.3809 PMID: 31867822
  134. Jiang M, Bajpayee NS. Molecular mechanisms of go signaling. Neurosignals 2009; 17(1): 23-41. doi: 10.1159/000186688 PMID: 19212138
  135. Bartlett PJ, Metzger W, Gaspers LD, Thomas AP. Differential regulation of multiple steps in inositol 1,4,5-trisphosphate signaling by protein kinase C shapes hormone-stimulated Ca2+ oscillations. J Biol Chem 2015; 290(30): 18519-33. doi: 10.1074/jbc.M115.657767 PMID: 26078455
  136. Barnett ME, Madgwick DK, Takemoto DJ. Protein kinase C as a stress sensor. Cell Signal 2007; 19(9): 1820-9. doi: 10.1016/j.cellsig.2007.05.014 PMID: 17629453
  137. Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol 2015; 6: 128. doi: 10.3389/fphar.2015.00128 PMID: 26157389
  138. Redig AJ, Platanias LC. The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res 2007; 27(8): 623-36. doi: 10.1089/jir.2007.0007 PMID: 17784814
  139. Hansson A, Serhan CN, Haeggström J, Ingelman-Sundberg M, Samuelsson B, Morris J. Activation of protein kinase C by lipoxin A and other eicosanoids. Intracellular action of oxygenation products of arachidonic acid. Biochem Biophys Res Commun 1986; 134(3): 1215-22. doi: 10.1016/0006-291X(86)90380-3 PMID: 2418836
  140. Salerno F, Paolini NA, Stark R, von Lindern M, Wolkers MC. Distinct PKC-mediated posttranscriptional events set cytokine production kinetics in CD8+ T cells. Proc Natl Acad Sci 2017; 114(36): 9677-82. doi: 10.1073/pnas.1704227114 PMID: 28835535
  141. Zhang L, Wei X, Wang Z, et al. NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep 2023; 42(3): 112185. doi: 10.1016/j.celrep.2023.112185 PMID: 36857187
  142. Dhar V, Gandhi S, Sakharwade SC, Chawla A, Mukhopadhaya A. Vibrio cholerae porin OmpU activates dendritic cells via TLR2 and the NLRP3 inflammasome. Infect Immun 2023; 91(2): e00332-22. doi: 10.1128/iai.00332-22 PMID: 36794951
  143. Ghaiad HR, Ali SO, Al-Mokaddem AK, Abdelmonem M. Regulation of PKC/TLR-4/NF-kB signaling by sulbutiamine improves diabetic nephropathy in rats. Chem Biol Interact 2023; 381: 110544. doi: 10.1016/j.cbi.2023.110544 PMID: 37224990
  144. Kusampudi S, Meganathan V, Keshava S, Boggaram V. Purification and characterization of a serine protease from organic dust and elucidation of its inductive effects on lung inflammatory mediators. Am J Physiol Lung Cell Mol Physiol 2023; 325(1): L74-90. doi: 10.1152/ajplung.00309.2022 PMID: 37253661
  145. Perveen K, Quach A, Stark MJ, et al. PKCζ activation promotes maturation of cord blood T cells towards a Th1 IFN-γ propensity. Immunology 2023; 170(3): 359-73. doi: 10.1111/imm.13674 PMID: 37340593
  146. Underhill SM, Amara SG. Acetylcholine receptor stimulation activates protein kinase C mediated internalization of the dopamine transporter. Front Cell Neurosci 2021; 15: 662216. doi: 10.3389/fncel.2021.662216 PMID: 33897375
  147. Blank T, Zwart R, Nijholt I, Spiess J. Serotonin 5-HT2 receptor activation potentiatesN-methyl-D-aspartate receptor-mediated ion currents by a protein kinase C-dependent mechanism. J Neurosci Res 1996; 45(2): 153-60. doi: 10.1002/(SICI)1097-4547(19960715)45:23.0.CO;2-9 PMID: 8843032
  148. Liu Z, Bunney EB, Appel SB, Brodie MS. Serotonin reduces the hyperpolarization-activated current (Ih) in ventral tegmental area dopamine neurons: Involvement of 5-HT2 receptors and protein kinase C. J Neurophysiol 2003; 90(5): 3201-12. doi: 10.1152/jn.00281.2003 PMID: 12890794
  149. Mi X, Ding WG, Toyoda F, Kojima A, Omatsu-Kanbe M, Matsuura H. Selective activation of adrenoceptors potentiates IKs current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J Mol Cell Cardiol 2021; 161: 86-97. doi: 10.1016/j.yjmcc.2021.08.004 PMID: 34375616
  150. Di Marzo V, Vial D, Sokoloff P, Schwartz JC, Piomelli D. Selection of alternative G-mediated signaling pathways at the dopamine D2 receptor by protein kinase C. J Neurosci 1993; 13(11): 4846-53. doi: 10.1523/JNEUROSCI.13-11-04846.1993 PMID: 7693893
  151. Matowe WC, Ananthalakshmi KVV, Kombian SB. Role of protein kinase C in substance P-induced synaptic depression in the nucleus accumbens in vitro. Med Princ Pract 2007; 16(2): 90-9. doi: 10.1159/000098359 PMID: 17303942
  152. Vaughan PFT, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol 1998; 18(2): 125-55. doi: 10.1007/BF02914269 PMID: 10065877
  153. Schroeder GE, Kotsonis P, Musgrave IF, Majewski H. Protein kinase C involvement in maintenance and modulation of noradrenaline release in the mouse brain cortex. Br J Pharmacol 1995; 116(6): 2757-63. doi: 10.1111/j.1476-5381.1995.tb17238.x PMID: 8591001
  154. Obis T, Besalduch N, Hurtado E, et al. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: Location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol Brain 2015; 8(1): 8. doi: 10.1186/s13041-015-0098-x PMID: 25761522
  155. Weiss S, Dascal N. Molecular aspects of modulation of L-type calcium channels by protein kinase C. Curr Mol Pharmacol 2015; 8(1): 43-53. doi: 10.2174/1874467208666150507094733 PMID: 25966700
  156. Gada KD, Logothetis DE. PKC regulation of ion channels: The involvement of PIP2. J Biol Chem 2022; 298(6): 102035. doi: 10.1016/j.jbc.2022.102035 PMID: 35588786
  157. Robilotto GL, Mohapatra DP, Shepherd AJ, Mickle AD. Role of Src kinase in regulating protein kinase C mediated phosphorylation of TRPV1. Eur J Pain 2022; 26(9): 1967-78. doi: 10.1002/ejp.2017 PMID: 35900227
  158. Brandt DT, Goerke A, Heuer M, et al. Protein kinase C delta induces Src kinase activity via activation of the protein tyrosine phosphatase PTP alpha. J Biol Chem 2003; 278(36): 34073-8. doi: 10.1074/jbc.M211650200 PMID: 12826681
  159. Gatesman A, Walker VG, Baisden JM, Weed SA, Flynn DC. Protein kinase Calpha activates c-Src and induces podosome formation via AFAP-110. Mol Cell Biol 2004; 24(17): 7578-97. doi: 10.1128/MCB.24.17.7578-7597.2004 PMID: 15314167
  160. Matsuoka H, Harada K, Mashima K, Inoue M. Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Cell Signal 2020; 65: 109434. doi: 10.1016/j.cellsig.2019.109434 PMID: 31676368
  161. Yamazaki Y, Jia Y, Wong JK, Sumikawa K. Chronic nicotine-induced switch in Src-family kinase signaling for long-term potentiation induction in hippocampal CA1 pyramidal cells. Eur J Neurosci 2006; 24(11): 3271-84. doi: 10.1111/j.1460-9568.2006.05213.x PMID: 17156388
  162. Szilveszter KP, Németh T, Mócsai A. Tyrosine kinases in autoimmune and inflammatory skin diseases. Front Immunol 2019; 10: 1862. doi: 10.3389/fimmu.2019.01862 PMID: 31447854
  163. Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012: 1-18. doi: 10.1155/2012/512926 PMID: 23209344
  164. Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520: 111075. doi: 10.1016/j.mce.2020.111075 PMID: 33181235
  165. Yalçin Kehri̇bar D, Özgen M, Yolbaş S, et al. The inhibition of Src kinase suppresses the production of matrix metalloproteinases in from synovial fibroblasts and inhibits MAPK and STATs pathways. Turk J Med Sci 2021; 51(4): 2142-9. doi: 10.3906/sag-2008-274 PMID: 33714238
  166. Nie L, Ye WR, Chen S, Chirchiglia D, Wang M. Src family kinases in the central nervous system: Their emerging role in pathophysiology of migraine and neuropathic pain. Curr Neuropharmacol 2021; 19(5): 665-78. doi: 10.2174/1570159X18666200814180218 PMID: 32798375
  167. Cirotti C, Contadini C, Barilà D. SRC kinase in glioblastoma: News from an old acquaintance. Cancers (Basel) 2020; 12(6): 1558. doi: 10.3390/cancers12061558 PMID: 32545574
  168. Wang JQ, Derges JD, Bodepudi A, Pokala N, Mao LM. Roles of non-receptor tyrosine kinases in pathogenesis and treatment of depression. J Integr Neurosci 2022; 21(1): 25. doi: 10.31083/j.jin2101025 PMID: 35164461
  169. Christidis P, Vij A, Petousis S, et al. Neuroprotective effect of Src kinase in hypoxia-ischemia: A systematic review. Front Neurosci 2022; 16: 1049655. doi: 10.3389/fnins.2022.1049655 PMID: 36507364
  170. Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 2001; 11(3): 336-42. doi: 10.1016/S0959-4388(00)00216-6 PMID: 11399432
  171. Lei J, Ingbar DH. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol 2011; 301(5): L765-71. doi: 10.1152/ajplung.00151.2011 PMID: 21840963
  172. Black JD, Affandi T, Black AR, Reyland ME. PKC α and PKC δ: Friends and rivals. J Biol Chem 2022; 298(8): 102194. doi: 10.1016/j.jbc.2022.102194 PMID: 35760100
  173. Cheng JJ, Wung BS, Chao YJ, Wang DL. Sequential activation of protein kinase C (PKC)-alpha and PKC-epsilon contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem 2001; 276(33): 31368-75. doi: 10.1074/jbc.M011317200 PMID: 11399752
  174. Dresselhaus EC, Meffert MK. Cellular specificity of NF-κB function in the nervous system. Front Immunol 2019; 10: 1043. doi: 10.3389/fimmu.2019.01043 PMID: 31143184
  175. O’Neill LAJ, Kaltschmidt C. NF-kB: A crucial transcription factor for glial and neuronal cell function. Trends Neurosci 1997; 20(6): 252-8. doi: 10.1016/S0166-2236(96)01035-1 PMID: 9185306
  176. Chu LF, Wang WT, Ghanta VK, Lin CH, Chiang YY, Hsueh CM. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res 2008; 1239: 24-35. doi: 10.1016/j.brainres.2008.08.087 PMID: 18804095
  177. Zeng A, Yin J, Li Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis 2018; 9(3): 394. doi: 10.1038/s41419-018-0343-1 PMID: 29531296
  178. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S. Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 1996; 271(38): 23512-9. doi: 10.1074/jbc.271.38.23512 PMID: 8798560
  179. Nagao M, Yamauchi J, Kaziro Y, Itoh H. Involvement of protein kinase C and Src family tyrosine kinase in Galphaq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Biol Chem 1998; 273(36): 22892-8. doi: 10.1074/jbc.273.36.22892 PMID: 9722508
  180. Leonard B, McCann JL, Starrett GJ, et al. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res 2015; 75(21): 4538-47. doi: 10.1158/0008-5472.CAN-15-2171-T PMID: 26420215
  181. Lu W, Tang S, Li A, et al. The role of PKC/PKR in aging, Alzheimer’s disease, and perioperative neurocognitive disorders. Front Aging Neurosci 2022; 14: 973068. doi: 10.3389/fnagi.2022.973068 PMID: 36172481
  182. Hornik TC, Neniskyte U, Brown GC. Inflammation induces multinucleation of Microglia via PKC inhibition of cytokinesis, generating highly phagocytic multinucleated giant cells. J Neurochem 2014; 128(5): 650-61. doi: 10.1111/jnc.12477 PMID: 24117490
  183. Abramson E, Hardman C, Shimizu AJ, et al. Designed PKC-targeting bryostatin analogs modulate innate immunity and neuroinflammation. Cell Chem Biol 2021; 28(4): 537-545.e4. doi: 10.1016/j.chembiol.2020.12.015 PMID: 33472023
  184. Prescott JA, Mitchell JP, Cook SJ. Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478(13): 2619-64. doi: 10.1042/BCJ20210139 PMID: 34269817
  185. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2(1): 17023. doi: 10.1038/sigtrans.2017.23 PMID: 29158945
  186. Matsumori A. Nuclear Factor-κB is a prime candidate for the diagnosis and control of inflammatory cardiovascular disease. Eur Cardiol 2023; 18: e40. doi: 10.15420/ecr.2023.10 PMID: 37456770
  187. Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) signaling in neurodegenerative diseases: An mechanistic approach. Curr Neuropharmacol 2020; 18(10): 918-35. doi: 10.2174/1570159X18666200207120949 PMID: 32031074
  188. Mettang M, Reichel SN, Lattke M, et al. IKK2/NF-κB signaling protects neurons after traumatic brain injury. FASEB J 2018; 32(4): 1916-32. doi: 10.1096/fj.201700826R PMID: 29187362
  189. Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74(2): 443-56. doi: 10.1046/j.1471-4159.2000.740443.x PMID: 10646495
  190. Li Y, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation 2021; 18(1): 1. doi: 10.1186/s12974-020-02040-8 PMID: 33402173
  191. Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front Mol Neurosci 2022; 15: 954541. doi: 10.3389/fnmol.2022.954541 PMID: 35983068
  192. Sun E, Motolani A, Campos L, Lu T. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease. Int J Mol Sci 2022; 23(16): 8972. doi: 10.3390/ijms23168972 PMID: 36012242
  193. Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer’s disease. Mol Biomed 2021; 2(1): 17. doi: 10.1186/s43556-021-00036-1 PMID: 35006431
  194. Nakano N, Matsuda S, Ichimura M, et al. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson’s disease (Review). Int J Mol Med 2017; 39(2): 253-60. doi: 10.3892/ijmm.2016.2833 PMID: 28000847
  195. Dobbin Z, Landen C. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci 2013; 14(4): 8213-27. doi: 10.3390/ijms14048213 PMID: 23591839
  196. Patke A, Mecklenbräuker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKCβ- and Akt-dependent mechanism. J Exp Med 2006; 203(11): 2551-62. doi: 10.1084/jem.20060990 PMID: 17060474
  197. Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq signaling in autophagy control: Between chemical and mechanical cues. Antioxidants 2022; 11(8): 1599. doi: 10.3390/antiox11081599 PMID: 36009317
  198. Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: Implications for obesity and diabetes. Cell Physiol Biochem 2015; 35(4): 1253-75. doi: 10.1159/000373949 PMID: 25721445
  199. Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat 2012; 2012: 1-8. doi: 10.1155/2012/752563 PMID: 23320155
  200. Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37(6): 1909-29. doi: 10.1007/s11011-022-01026-0 PMID: 35687217
  201. Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway. BMC Anesthesiol 2019; 19(1): 134. doi: 10.1186/s12871-019-0808-5 PMID: 31351473
  202. Lima IVA, Almeida-Santos AF, Ferreira-Vieira TH, et al. Antidepressant-like effect of valproic acid-Possible involvement of PI3K/Akt/mTOR pathway. Behav Brain Res 2017; 329: 166-71. doi: 10.1016/j.bbr.2017.04.015 PMID: 28408298
  203. Wang Y, Wang W, Li D, et al. IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 2014; 229(11): 1618-29. doi: 10.1002/jcp.24607 PMID: 24604717
  204. Jadaun KS, Mehan S, Sharma A, Siddiqui EM, Kumar S, Alsuhaymi N. Neuroprotective effect of chrysophanol as a PI3K/AKT/mTOR signaling inhibitor in an experimental model of autologous blood-induced intracerebral hemorrhage. Curr Med Sci 2022; 42(2): 249-66. doi: 10.1007/s11596-022-2496-x
  205. Nidai Ozes O, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 1999; 401(6748): 82-5. doi: 10.1038/43466 PMID: 10485710
  206. Romashkova JA, Makarov SS. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401(6748): 86-90. doi: 10.1038/43474 PMID: 10485711
  207. Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of aging: Regulation via AKT/IKK/NF-κB signaling. Cell Signal 2010; 22(4): 573-7. doi: 10.1016/j.cellsig.2009.10.006 PMID: 19861158
  208. Lin CY, Chen JH, Fu RH, Tsai CW. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity. Chem Res Toxicol 2014; 27(11): 1958-66. doi: 10.1021/tx5003063 PMID: 25271104
  209. Li M, Zhong X, Xu WT. Substance P promotes the progression of bronchial asthma through activating the PI3K/AKT/NF-κB pathway mediated cellular inflammation and pyroptotic cell death in bronchial epithelial cells. Cell Cycle 2022; 21(20): 2179-91. doi: 10.1080/15384101.2022.2092166 PMID: 35726575
  210. Chen P, Huang N, Pang B, et al. Proteomic and metabolomic approaches elucidate the molecular mechanism of emodin against neuropathic pain through modulating the gamma-aminobutyric acid (GABA)-ergic pathway and PI3K/AKT/NF-κB pathway. Phytother Res 2023; 37(5): 1883-99. doi: 10.1002/ptr.7704 PMID: 36723382
  211. Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol 2023; 129: 104846. doi: 10.1016/j.yexmp.2022.104846 PMID: 36436571
  212. Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. J Neuroinflammation 2021; 18(1): 276. doi: 10.1186/s12974-021-02325-6 PMID: 34838047
  213. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19(4): 2435-44. doi: 10.1128/MCB.19.4.2435 PMID: 10082509
  214. Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen activated protein kinases family. PLoS One 2011; 6(10): e26999. doi: 10.1371/journal.pone.0026999 PMID: 22046431
  215. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol 2002; 20(1): 55-72. doi: 10.1146/annurev.immunol.20.091301.131133 PMID: 11861597
  216. Sattarifard H, Safaei A, Khazeeva E, Rastegar M, Davie JR. Mitogen- and stress-activated protein kinase (MSK1/2) regulated gene expression in normal and disease states. Biochem Cell Biol 2023; 101(3): 204-19. doi: 10.1139/bcb-2022-0371 PMID: 36812480
  217. Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13(9): 679-92. doi: 10.1038/nri3495 PMID: 23954936
  218. Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013; 4(9-10): 401-8. doi: 10.1177/1947601913485414 PMID: 24349638
  219. Cruz C, Cruz F. The ERK 1 and 2 pathway in the nervous system: From basic aspects to possible clinical applications in pain and visceral dysfunction. Curr Neuropharmacol 2007; 5(4): 244-52. doi: 10.2174/157015907782793630 PMID: 19305741
  220. Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68: 109541. doi: 10.1016/j.cellsig.2020.109541 PMID: 31945453
  221. Ryu HH, Kim T, Kim JW, et al. Excitatory neuron–specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal 2019; 12(571): eaau5755. doi: 10.1126/scisignal.aau5755 PMID: 30837304
  222. Choi H, Kim IS, Mun JY. Propionic acid induces dendritic spine loss by MAPK/ERK signaling and dysregulation of autophagic flux. Mol Brain 2020; 13(1): 86. doi: 10.1186/s13041-020-00626-0 PMID: 32487196
  223. Chen Q, Kong L, Xu Z, et al. The role of TMEM16A/ERK/NK-1 signaling in dorsal root ganglia neurons in the development of neuropathic pain induced by spared nerve injury (SNI). Mol Neurobiol 2021; 58(11): 5772-89. doi: 10.1007/s12035-021-02520-9 PMID: 34406600
  224. Maruta T, Nemoto T, Hidaka K, et al. Upregulation of ERK phosphorylation in rat dorsal root ganglion neurons contributes to oxaliplatin-induced chronic neuropathic pain. PLoS One 2019; 14(11): e0225586. doi: 10.1371/journal.pone.0225586 PMID: 31765435
  225. Cakir M, Grossman AB. Targeting MAPK (Ras/ERK) and PI3K/Akt pathways in pituitary tumorigenesis. Expert Opin Ther Targets 2009; 13(9): 1121-34. doi: 10.1517/14728220903170675 PMID: 19637976
  226. Gao WL, Tian F, Zhang SQ, Zhang H, Yin ZS. Epidermal growth factor increases the expression of Nestin in rat reactive astrocytes through the Ras–Raf–ERK pathway. Neurosci Lett 2014; 562: 54-9. doi: 10.1016/j.neulet.2014.01.018 PMID: 24462842
  227. Yin G, Huang J, Petela J, et al. Targeting small GTPases: Emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8(1): 212. doi: 10.1038/s41392-023-01441-4 PMID: 37221195
  228. Merighi S, Benini A, Mirandola P, et al. Modulation of the Akt/Ras/Raf/MEK/ERK pathway by A3 adenosine receptor. Purinergic Signal 2006; 2(4): 627-32. doi: 10.1007/s11302-006-9020-4 PMID: 18404465
  229. Crudden C, Shibano T, Song D, Suleymanova N, Girnita A, Girnita L. Blurring boundaries: Receptor tyrosine kinases as functional g protein-coupled receptors. Int Rev Cell Mol Biol 2018; 339: 1-40. doi: 10.1016/bs.ircmb.2018.02.006 PMID: 29776602
  230. Spiegel A. Cell signaling. beta-arrestin-not just for G protein-coupled receptors. Science 2003; 301(5638): 1338-9. doi: 10.1126/science.1089552 PMID: 12958351
  231. Qu C, Park JY, Yun MW, et al. Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade. Proc Natl Acad Sci 2021; 118(37): e2026491118. doi: 10.1073/pnas.2026491118 PMID: 34507982
  232. Eishingdrelo H, Sun W, Li H, et al. ERK and β-arrestin interaction: A converging point of signaling pathways for multiple types of cell surface receptors. SLAS Discov 2015; 20(3): 341-9. doi: 10.1177/1087057114557233 PMID: 25361946
  233. Gurevich VV, Gurevich EV. GPCR signaling regulation: The role of GRKs and arrestins. Front Pharmacol 2019; 10: 125. doi: 10.3389/fphar.2019.00125 PMID: 30837883
  234. Shah K, Lahiri DK. Cdk5 activity in the brain – multiple paths of regulation. J Cell Sci 2014; 127(11): 2391-400. doi: 10.1242/jcs.147553 PMID: 24879856
  235. Barnett DGS, Bibb JA. The role of Cdk5 in cognition and neuropsychiatric and neurological pathology. Brain Res Bull 2011; 85(1-2): 9-13. doi: 10.1016/j.brainresbull.2010.11.016 PMID: 21145377
  236. Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16: 951202. doi: 10.3389/fncel.2022.951202 PMID: 35966199
  237. Pao PC, Tsai LH. Three decades of Cdk5. J Biomed Sci 2021; 28(1): 79. doi: 10.1186/s12929-021-00774-y PMID: 34814918
  238. Reinhardt L, Kordes S, Reinhardt P, et al. Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem Cell Reports 2019; 12(3): 502-17. doi: 10.1016/j.stemcr.2019.01.015 PMID: 30773488
  239. Klinman E, Holzbaur ELF. Stress-induced CDK5 activation disrupts axonal transport via Lis1/Ndel1/Dynein. Cell Rep 2015; 12(3): 462-73. doi: 10.1016/j.celrep.2015.06.032 PMID: 26166569
  240. Papadopoulou A, Siamatras T, Delgado-Morales R, et al. Acute and chronic stress differentially regulate cyclin-dependent kinase 5 in mouse brain: Implications to glucocorticoid actions and major depression. Transl Psychiatry 2015; 5(6): e578. doi: 10.1038/tp.2015.72 PMID: 26057048
  241. Shi GX, Cai W, Andres DA. Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cell Signal 2013; 25(10): 2060-8. doi: 10.1016/j.cellsig.2013.06.002 PMID: 23770287
  242. Reiner DJ, Lundquist EA. Small GTPases. WormBook 2018; 2018: 1-65. doi: 10.1895/wormbook.1.67.2 PMID: 27218782
  243. Lu Y, Peng W, Xu Y. Small GTPase and regulation of inflammation response in atherogenesis. J Cardiovasc Pharmacol 2013; 62(4): 331-40. doi: 10.1097/FJC.0b013e3182a12eb3 PMID: 23921305
  244. Puls A, Eliopoulos AG, Nobes CD, Bridges T, Young LS, Hall A. Activation of the small GTPase Cdc42 by the inflammatory cytokines TNFα and IL-1, and by the Epstein-Barr virus transforming protein LMP1. J Cell Sci 1999; 112(17): 2983-92. doi: 10.1242/jcs.112.17.2983 PMID: 10444392
  245. Bros M, Haas K, Moll L, Grabbe S. RhoA as a key regulator of innate and adaptive immunity. Cells 2019; 8(7): 733. doi: 10.3390/cells8070733 PMID: 31319592
  246. Ponimaskin E, Voyno-Yasenetskaya T, Richter DW, Schachner M, Dityatev A. Morphogenic signaling in neurons via neurotransmitter receptors and small GTPases. Mol Neurobiol 2007; 35(3): 278-87. doi: 10.1007/s12035-007-0023-0 PMID: 17917116
  247. Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 2016; 428(19): 3850-68. doi: 10.1016/j.jmb.2016.08.002 PMID: 27515397
  248. Bhattacharya M, Babwah AV, Ferguson SSG. Small GTP-binding protein-coupled receptors. Biochem Soc Trans 2004; 32(6): 1040-4. doi: 10.1042/BST0321040 PMID: 15506958
  249. Qu L, Pan C, He SM, et al. The ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front Mol Neurosci 2019; 12: 121. doi: 10.3389/fnmol.2019.00121 PMID: 31213978
  250. Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological modulators of small GTPases of rho family in neurodegenerative diseases. Front Cell Neurosci 2021; 15: 661612. doi: 10.3389/fncel.2021.661612 PMID: 34054432
  251. Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, et al. Small GTPases of the Ras and rho families switch on/off signaling pathways in neurodegenerative diseases. Int J Mol Sci 2020; 21(17): 6312. doi: 10.3390/ijms21176312 PMID: 32878220
  252. Norum JH, Hart K, Levy FO. Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 2003; 278(5): 3098-104. doi: 10.1074/jbc.M206237200 PMID: 12446729
  253. Yang HW, Shin MG, Lee S, et al. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell 2012; 47(2): 281-90. doi: 10.1016/j.molcel.2012.05.007 PMID: 22683270
  254. Senoo H, Wai M, Matsubayashi HT, Sesaki H, Iijima M. Hetero-oligomerization of Rho and Ras GTPases connects GPCR activation to mTORC2-AKT signaling. Cell Rep 2020; 33(8): 108427. doi: 10.1016/j.celrep.2020.108427 PMID: 33238110
  255. Bresnick AR, Backer JM. PI3Kβ-A versatile transducer for GPCR, RTK, and Small GTPase signaling. Endocrinology 2019; 160(3): 536-55. doi: 10.1210/en.2018-00843 PMID: 30601996
  256. Wang G, Wei Z, Wu G. Role of Rab GTPases in the export trafficking of G protein-coupled receptors. Small GTPases 2018; 9(1-2): 130-5. doi: 10.1080/21541248.2016.1277000 PMID: 28125329
  257. Slater SJ, Seiz JL, Stagliano BA, Stubbs CD. Interaction of protein kinase C isozymes with Rho GTPases. Biochemistry 2001; 40(14): 4437-45. doi: 10.1021/bi001654n PMID: 11284700
  258. Johnson DS, Chen YH. Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 2012; 12(4): 458-63. doi: 10.1016/j.coph.2012.02.003 PMID: 22401931
  259. Johnstone TB, Agarwal SR, Harvey RD, Ostrom RS. cAMP signaling compartmentation: Adenylyl cyclases as anchors of dynamic signaling complexes. Mol Pharmacol 2018; 93(4): 270-6. doi: 10.1124/mol.117.110825 PMID: 29217670
  260. Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315: 113797. doi: 10.1016/j.ygcen.2021.113797 PMID: 33957096
  261. Halls ML, Cooper DMF. Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 2011; 3(1): a004143. doi: 10.1101/cshperspect.a004143 PMID: 21123395
  262. Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci 2008; 84(1): 18-25. doi: 10.1016/j.rvsc.2007.02.003 PMID: 17397885
  263. Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP. Am J Respir Cell Mol Biol 2008; 39(2): 127-32. doi: 10.1165/rcmb.2008-0091TR PMID: 18323530
  264. Tavares LP, Negreiros-Lima GL, Lima KM, et al. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159: 105030. doi: 10.1016/j.phrs.2020.105030 PMID: 32562817
  265. Dhyani V, Gare S, Gupta RK, Swain S, Venkatesh KV, Giri L. GPCR mediated control of calcium dynamics: A systems perspective. Cell Signal 2020; 74: 109717. doi: 10.1016/j.cellsig.2020.109717 PMID: 32711109
  266. Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. FEBS J 2005; 272(14): 3491-504. doi: 10.1111/j.1742-4658.2005.04763.x PMID: 16008550
  267. Sobolczyk M, Boczek T. Astrocytic calcium and cAMP in neurodegenerative diseases. Front Cell Neurosci 2022; 16: 889939. doi: 10.3389/fncel.2022.889939 PMID: 35663426
  268. Ceddia RP, Collins S. A compendium of G-protein–coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci 2020; 134(5): 473-512. doi: 10.1042/CS20190579 PMID: 32149342
  269. Lutzu S, Castillo PE. Modulation of NMDA receptors by g-protein-coupled receptors: Role in synaptic transmission, plasticity and beyond. Neuroscience 2021; 456: 27-42. doi: 10.1016/j.neuroscience.2020.02.019 PMID: 32105741
  270. Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and compartmentation of cAMP and cGMP signaling in regulation of cardiac contractility in normal and failing hearts. Int J Mol Sci 2022; 23(4): 2145. doi: 10.3390/ijms23042145 PMID: 35216259
  271. Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta Bioenerg 1999; 1411(2-3): 334-50. doi: 10.1016/S0005-2728(99)00024-9 PMID: 10320667
  272. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010; 62(3): 525-63. doi: 10.1124/pr.110.002907 PMID: 20716671
  273. Golshiri K, Ataei Ataabadi E, Portilla FEC, Jan Danser AH, Roks AJM. The importance of the nitric oxide-cGMP pathway in age-related cardiovascular disease: Focus on phosphodiesterase-1 and soluble guanylate cyclase. Basic Clin Pharmacol Toxicol 2020; 127(2): 67-80. doi: 10.1111/bcpt.13319 PMID: 31495057
  274. Feng C, Zheng H, Feng C. Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases. Front Biosci 2018; 23(10): 1803-21. doi: 10.2741/4674 PMID: 29772530
  275. Araki S, Osuka K, Takata T, Tsuchiya Y, Watanabe Y. Coordination between calcium/calmodulin-dependent protein kinase II and neuronal nitric oxide synthase in neurons. Int J Mol Sci 2020; 21(21): 7997. doi: 10.3390/ijms21217997 PMID: 33121174
  276. Qu J, Mei Q, Niu R. Oxidative CaMKII as a potential target for inflammatory disease. Mol Med Rep 2019; 20(2): 863-70. doi: 10.3892/mmr.2019.10309 PMID: 31173191
  277. Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82: 59-74. doi: 10.1016/j.niox.2018.10.006 PMID: 30394348
  278. Sharina I, Martin E. Cellular factors that shape the activity or function of nitric oxide-stimulated soluble guanylyl cyclase. Cells 2023; 12(3): 471. doi: 10.3390/cells12030471 PMID: 36766813
  279. Rapôso C, Luna RLA, Nunes AKS, Thomé R, Peixoto CA. Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Res Bull 2014; 104: 60-73. doi: 10.1016/j.brainresbull.2014.04.002 PMID: 24727400
  280. Sticozzi C, Belmonte G, Frosini M, Pessina F. Nitric oxide/cyclic GMP-dependent calcium signalling mediates IL-6- and TNF-α-induced expression of glial fibrillary acid protein. J Mol Neurosci 2021; 71(4): 854-66. doi: 10.1007/s12031-020-01708-3 PMID: 32964397
  281. França MER, Peixoto CA. cGMP signaling pathway in hepatic encephalopathy neuroinflammation and cognition. Int Immunopharmacol 2020; 79: 106082. doi: 10.1016/j.intimp.2019.106082 PMID: 31869775
  282. Correia SS, Liu G, Jacobson S, et al. The CNS-penetrant soluble guanylate cyclase stimulator CYR119 attenuates markers of inflammation in the central nervous system. J Neuroinflamm 2021; 18(1): 213. doi: 10.1186/s12974-021-02275-z PMID: 34537066
  283. Peixoto CA, Nunes AKS, Garcia-Osta A. Phosphodiesterase-5 inhibitors: Action on the signaling pathways of neuroinflammation, neurodegeneration, and cognition. Mediators Inflamm 2015; 2015: 1-17. doi: 10.1155/2015/940207 PMID: 26770022
  284. Jehle A, Garaschuk O. The interplay between cGMP and calcium signaling in Alzheimer’s disease. Int J Mol Sci 2022; 23(13): 7048. doi: 10.3390/ijms23137048 PMID: 35806059
  285. Gong R, Ding C, Hu J, et al. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science 2011; 333(6049): 1642-6. doi: 10.1126/science.1207675 PMID: 21835979
  286. Fu Y, Liu H, He L, et al. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the Hippocampus of offspring. Behav Brain Res 2022; 433: 114009. doi: 10.1016/j.bbr.2022.114009 PMID: 35850398
  287. Hildebrand S, Ibrahim M, Schlitzer A, Maegdefessel L, Röll W, Pfeifer A. PDGF regulates guanylate cyclase expression and cGMP signaling in vascular smooth muscle. Commun Biol 2022; 5(1): 197. doi: 10.1038/s42003-022-03140-2 PMID: 35241778
  288. Liao K, Lv DY, Yu HL, et al. iNOS regulates activation of the NLRP3 inflammasome through the sGC/cGMP/PKG/TACE/TNF-α axis in response to cigarette smoke resulting in aortic endothelial pyroptosis and vascular dysfunction. Int Immunopharmacol 2021; 101(Pt B): 108334.
  289. Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 1985; 5(12): 3270-7. doi: 10.1523/JNEUROSCI.05-12-03270.1985 PMID: 4078628
  290. Bayer KU, Schulman H. CaM kinase: Still inspiring at 40. Neuron 2019; 103(3): 380-94. doi: 10.1016/j.neuron.2019.05.033 PMID: 31394063
  291. Zalcman G, Federman N, Romano A. CaMKII isoforms in learning and memory: Localization and function. Front Mol Neurosci 2018; 11: 445. doi: 10.3389/fnmol.2018.00445 PMID: 30564099
  292. Wang X, Zhang C, Szábo G, Sun QQ. Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 2013; 1518: 9-25. doi: 10.1016/j.brainres.2013.04.042 PMID: 23632380
  293. Nicole O, Pacary E. CaMKIIβ in neuronal development and plasticity: An emerging candidate in brain diseases. Int J Mol Sci 2020; 21(19): 7272. doi: 10.3390/ijms21197272 PMID: 33019657
  294. Song Q, Fan C, Wang P, Li Y, Yang M, Yu SY. Hippocampal CA1 βCaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. J Neuroinflamm 2018; 15(1): 338. doi: 10.1186/s12974-018-1377-0 PMID: 30526621
  295. Jiang H, Ashraf GM, Liu M, et al. Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-dependent MAPK/NF-κB pathways. Oxid Med Cell Longev 2021; 2021: 1-18. doi: 10.1155/2021/6673967 PMID: 34527176
  296. Robison AJ. Emerging role of CaMKII in neuropsychiatric disease. Trends Neurosci 2014; 37(11): 653-62. doi: 10.1016/j.tins.2014.07.001 PMID: 25087161
  297. Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/calmodulin-dependent protein kinase type II in mediating function and dysfunction at glutamatergic synapses. Front Mol Neurosci 2022; 15: 855752. doi: 10.3389/fnmol.2022.855752 PMID: 35795689
  298. Kawaguchi S, Hirano T. Gating of long-term depression by Ca2+/ calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells. J Physiol 2013; 591(7): 1707-30. doi: 10.1113/jphysiol.2012.245787 PMID: 23297306
  299. Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: Heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311(3): C462-78. doi: 10.1152/ajpcell.00341.2015 PMID: 27306369
  300. Jones RJ, Jourd’heuil D, Salerno JC, Smith SME, Singer HA. iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2007; 292(6): H2634-42. doi: 10.1152/ajpheart.01247.2006 PMID: 17293490
  301. Prasad AM, Morgan DA, Nuno DW, et al. Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 2015; 4(6): e001949. doi: 10.1161/JAHA.115.001949 PMID: 26077587
  302. Grottelli S, Amoroso R, Macchioni L, et al. Acetamidine-based iNOS inhibitors as molecular tools to counteract inflammation in BV2 microglial cells. Molecules 2020; 25(11): 2646. doi: 10.3390/molecules25112646 PMID: 32517272
  303. Gliozzi M, Scicchitano M, Bosco F, et al. Modulation of nitric oxide synthases by oxidized LDLs: Role in vascular inflammation and atherosclerosis development. Int J Mol Sci 2019; 20(13): 3294. doi: 10.3390/ijms20133294 PMID: 31277498
  304. Suschek C, Schnorr O, Kolb-Bachofen V. The role of iNOS in chronic inflammatory processes in vivo: Is it damage-promoting, protective, or active at all? Curr Mol Med 2004; 4(7): 763-75. doi: 10.2174/1566524043359908 PMID: 15579023
  305. Goldmann T, Wieghofer P, Jordão MJC, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 2016; 17(7): 797-805. doi: 10.1038/ni.3423 PMID: 27135602
  306. Hattori Y. The behavior and functions of embryonic microglia. Anat Sci Int 2022; 97(1): 1-14. doi: 10.1007/s12565-021-00631-w PMID: 34537900
  307. Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol 2017; 79(1): 619-43. doi: 10.1146/annurev-physiol-022516-034406 PMID: 27959620
  308. Gusev EY, Zotova NV, Zhuravleva YA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Med Immunol 2020; 22(1): 7-48. doi: 10.15789/1563-0625-PAP-1893
  309. Zhou M, Cornell J, Salinas S, Huang H-Y. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 2022; 17(4): 705-16. doi: 10.4103/1673-5374.322423 PMID: 34472455
  310. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci 2022; 14: 815347. doi: 10.3389/fnagi.2022.815347 PMID: 35250543
  311. Garaschuk O, Verkhratsky A. Physiology of microglia. Methods Mol Biol 2019; 2034: 27-40. doi: 10.1007/978-1-4939-9658-2_3 PMID: 31392675
  312. Bourgognon JM, Cavanagh J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv 2020; 4: 2398212820979802. doi: 10.1177/2398212820979802 PMID: 33415308
  313. Zhao J, Zhang W, Wu T, et al. Efferocytosis in the central nervous system. Front Cell Dev Biol 2021; 9: 773344. doi: 10.3389/fcell.2021.773344 PMID: 34926460
  314. Hiraga S, Itokazu T, Nishibe M, Yamashita T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm Regen 2022; 42(1): 15. doi: 10.1186/s41232-022-00199-6 PMID: 35501933
  315. Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin Immunopathol 2023; 45(3): 377-87. doi: 10.1007/s00281-023-00989-1 PMID: 37052711
  316. Shatz CJ. MHC class I: An unexpected role in neuronal plasticity. Neuron 2009; 64(1): 40-5. doi: 10.1016/j.neuron.2009.09.044 PMID: 19840547
  317. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8(9): 1254-66. doi: 10.7150/ijbs.4679 PMID: 23136554
  318. Gu Q, Kanungo J. Effect of ketamine on gene expression in zebrafish embryos. J Appl Toxicol 2021; 41(12): 2083-9. doi: 10.1002/jat.4199 PMID: 34002392
  319. Roberto M, Patel RR, Bajo M. Ethanol and cytokines in the central nervous system. Handb Exp Pharmacol 2017; 248: 397-431. doi: 10.1007/164_2017_77 PMID: 29236160
  320. García-Rodríguez MT, Juanatey-Rodríguez I, Seijo-Bestilleiro R, González-Martin C. Psycho-emotional distress in children and adolescents in relation to COVID-19 confinement and pandemic: A systematized review: Author lists. Ital J Pediatr 2023; 49(1): 47. doi: 10.1186/s13052-023-01450-7
  321. Dominguez-Salas S, Gomez-Salgado J, Andrés-Villas M, Diaz-Milanes D, Romero-Martin M, Ruiz-Frutos C. Psycho-emotional approach to the psychological distress related to the COVID-19 pandemic in Spain: A cross-sectional observational study. Healthcare 2020; 8: 190. doi: 10.3390/healthcare8030190
  322. Thakur A, Choudhary D, Kumar B, Chaudhary A. A review on post-traumatic stress disorder (PTSD): Symptoms, therapies and recent case studies. Curr Mol Pharmacol 2022; 15(3): 502-16. doi: 10.2174/1874467214666210525160944 PMID: 34036925
  323. Ressler KJ, Berretta S, Bolshakov VY, et al. Post-traumatic stress disorder: Clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18(5): 273-88. doi: 10.1038/s41582-022-00635-8 PMID: 35352034
  324. Maddox SA, Hartmann J, Ross RA, Ressler KJ. Deconstructing the gestalt: Mechanisms of fear, threat, and trauma memory encoding. Neuron 2019; 102(1): 60-74. doi: 10.1016/j.neuron.2019.03.017 PMID: 30946827
  325. Stout DM, Glenn DE, Acheson DT, Simmons AN, Risbrough VB. Characterizing the neural circuitry associated with configural threat learning. Brain Res 2019; 1719: 225-34. doi: 10.1016/j.brainres.2019.06.003 PMID: 31173725
  326. Glise K, Ahlborg G Jr, Jonsdottir IH. Prevalence and course of somatic symptoms in patients with stress-related exhaustion: Does sex or age matter. BMC Psychiatry 2014; 14(1): 118. doi: 10.1186/1471-244X-14-118 PMID: 24755373
  327. Nanni MG, Caruso R, Sabato S, Grassi L. Demoralization and embitterment. Psychol Trauma 2018; 10(1): 14-21. doi: 10.1037/tra0000326 PMID: 29323522
  328. Scarpa A, Raine A. Psychophysiology of anger and violent behavior. Psychiatr Clin North Am 1997; 20(2): 375-94. doi: 10.1016/S0193-953X(05)70318-X PMID: 9196920
  329. Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2016; 321: 138-62. doi: 10.1016/j.neuroscience.2015.05.053 PMID: 26037806
  330. Tafet GE, Nemeroff CB. The links between stress and depression: Psychoneuroendocrinological, genetic, and environmental interactions. J Neuropsychiatry Clin Neurosci 2016; 28(2): 77-88. doi: 10.1176/appi.neuropsych.15030053 PMID: 26548654
  331. Bernstein CN. Psychological stress and depression: Risk factors for IBD? Dig Dis 2016; 34(1-2): 58-63. doi: 10.1159/000442929 PMID: 26983009
  332. Ross JA, Van Bockstaele EJ. The locus coeruleus-norepinephrine system in stress and arousal: Unraveling historical, current, and future perspectives. Front Psychiatry 2021; 11: 601519. doi: 10.3389/fpsyt.2020.601519 PMID: 33584368
  333. Baik JH. Stress and the dopaminergic reward system. Exp Mol Med 2020; 52(12): 1879-90. doi: 10.1038/s12276-020-00532-4 PMID: 33257725
  334. Lee S, Jeong J, Kwak Y, Park SK. Depression research: Where are we now? Mol Brain 2010; 3(1): 8. doi: 10.1186/1756-6606-3-8 PMID: 20219105
  335. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology 2012; 62(1): 63-77. doi: 10.1016/j.neuropharm.2011.07.036 PMID: 21827775
  336. Wang YT, Wang XL, Feng ST, Chen NH, Wang ZZ, Zhang Y. Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression. Pharmacol Res 2021; 171: 105761. doi: 10.1016/j.phrs.2021.105761 PMID: 34242798
  337. Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11(7): 297-315. doi: 10.5498/wjp.v11.i7.297 PMID: 34327123
  338. Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72(1): 3-12. doi: 10.1111/pcn.12604 PMID: 28926161
  339. Bus BA, Molendijk ML. De neurotrofe hypothese van depressie. Tijdschr Psychiatr 2016; 58(3): 215-22. PMID: 26979853
  340. Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA. Ketamine and the disinhibition hypothesis: Neurotrophic factor-mediated treatment of depression. Pharmaceuticals 2023; 16(5): 742. doi: 10.3390/ph16050742 PMID: 37242525
  341. Li YF. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacol Ther 2020; 208: 107494. doi: 10.1016/j.pharmthera.2020.107494 PMID: 31991195
  342. Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 2002; 4(1): 7-20. doi: 10.31887/DCNS.2002.4.1/bbondy PMID: 22033824
  343. LeMoult J. From stress to depression: Bringing together cognitive and biological science. Curr Dir Psychol Sci 2020; 29(6): 592-8. doi: 10.1177/0963721420964039 PMID: 33343103
  344. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett 2018; 592(5): 692-702. doi: 10.1002/1873-3468.12964 PMID: 29292494
  345. Bolaños JP, Almeida A. The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 2010; 62(1): 14-8. doi: 10.1002/iub.280 PMID: 19937972
  346. Schiavone S, Jaquet V, Trabace L, Krause KH. Severe life stress and oxidative stress in the brain: From animal models to human pathology. Antioxid Redox Signal 2013; 18(12): 1475-90. doi: 10.1089/ars.2012.4720 PMID: 22746161
  347. Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 2009; 12(1): 1-21. doi: 10.1080/10253890802046281
  348. Hare DL. Depression and cardiovascular disease. Curr Opin Lipidol 2021; 32(3): 167-74. doi: 10.1097/MOL.0000000000000749 PMID: 33859128
  349. Rotariu D, Babes EE, Tit DM, et al. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152: 113238. doi: 10.1016/j.biopha.2022.113238 PMID: 35687909
  350. Zuo L, Prather ER, Stetskiv M, et al. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int J Mol Sci 2019; 20(18): 4472. doi: 10.3390/ijms20184472 PMID: 31510091
  351. Naomi R, Teoh SH, Embong H, et al. The role of oxidative stress and inflammation in obesity and its impact on cognitive impairments-a narrative review. Antioxidants 2023; 12(5): 1071. doi: 10.3390/antiox12051071 PMID: 37237937
  352. Sani G, Margoni S, Brugnami A, et al. The Nrf2 pathway in depressive disorders: A systematic review of animal and human studies. Antioxidants 2023; 12(4): 817. doi: 10.3390/antiox12040817 PMID: 37107192
  353. Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5: 116-32. doi: 10.1016/j.ibror.2018.11.004 PMID: 30591953
  354. Loeb E, El Asmar K, Trabado S, et al. Nitric oxide synthase activity in major depressive episodes before and after antidepressant treatment: Results of a large case-control treatment study. Psychol Med 2022; 52(1): 80-9. doi: 10.1017/S0033291720001749 PMID: 32524920
  355. Czarny P, Wigner P, Galecki P, Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 309-21. doi: 10.1016/j.pnpbp.2017.06.036 PMID: 28669580
  356. Rentscher KE, Carroll JE, Mitchell C. Psychosocial stressors and telomere length: A current review of the science. Annu Rev Public Health 2020; 41(1): 223-45. doi: 10.1146/annurev-publhealth-040119-094239 PMID: 31900099
  357. Vazquez-Villasenor I, Garwood CJ, Simpson JE, Heath PR, Mortiboys H, Wharton SB. Persistent DNA damage alters the neuronal transcriptome suggesting cell cycle dysregulation and altered mitochondrial function. Eur J Neurosci 2021; 54(9): 6987-7005.
  358. Shadfar S, Brocardo M, Atkin JD. The complex mechanisms by which neurons die following DNA damage in neurodegenerative diseases. Int J Mol Sci 2022; 23(5): 2484. doi: 10.3390/ijms23052484 PMID: 35269632
  359. Gupta S, You P, SenGupta T, Nilsen H, Sharma K. Crosstalk between different DNA repair pathways contributes to neurodegenerative diseases. Biology 2021; 10(2): 163. doi: 10.3390/biology10020163 PMID: 33669593
  360. Nisar S, Bhat AA, Hashem S, et al. Genetic and neuroimaging approaches to understanding post-traumatic stress disorder. Int J Mol Sci 2020; 21(12): 4503. doi: 10.3390/ijms21124503 PMID: 32599917
  361. Sherin JE, Nemeroff CB. Post-traumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues Clin Neurosci 2011; 13(3): 263-78. doi: 10.31887/DCNS.2011.13.2/jsherin PMID: 22034143
  362. Seah C, Breen MS, Rusielewicz T, et al. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nat Neurosci 2022; 25(11): 1434-45. doi: 10.1038/s41593-022-01161-y PMID: 36266471
  363. Bansal Y, Kuhad A. Mitochondrial dysfunction in depression. Curr Neuropharmacol 2016; 14(6): 610-8. doi: 10.2174/1570159X14666160229114755 PMID: 26923778
  364. Khan M, Baussan Y, Hebert-Chatelain E. Connecting dots between mitochondrial dysfunction and depression. Biomolecules 2023; 13(4): 695. doi: 10.3390/biom13040695 PMID: 37189442
  365. Hollis F, Pope BS, Gorman-Sandler E, Wood SK. Neuroinflammation and mitochondrial dysfunction link social stress to depression. Curr Top Behav Neurosci 2022; 54: 59-93. doi: 10.1007/7854_2021_300 PMID: 35184261
  366. Allen J, Caruncho HJ, Kalynchuk LE. Severe life stress, mitochondrial dysfunction, and depressive behavior: A pathophysiological and therapeutic perspective. Mitochondrion 2021; 56: 111-7. doi: 10.1016/j.mito.2020.11.010 PMID: 33220501
  367. Karabatsiakis A, Schönfeldt-Lecuona C. Depression, mitochondrial bioenergetics, and electroconvulsive therapy: A new approach towards personalized medicine in psychiatric treatment - A short review and current perspective. Transl Psychiatry 2020; 10(1): 226. doi: 10.1038/s41398-020-00901-7 PMID: 32647150
  368. Visentin APV, Colombo R, Scotton E, et al. Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges. Oxid Med Cell Longev 2020; 2020: 1-20. doi: 10.1155/2020/2972968 PMID: 32351669
  369. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017; 13(8): 477-91. doi: 10.1038/nrneurol.2017.99 PMID: 28731040
  370. de Mena L, Lopez-Scarim J, Rincon-Limas DE. TDP-43 and ER stress in neurodegeneration: Friends or foes? Front Mol Neurosci 2021; 14: 772226. doi: 10.3389/fnmol.2021.772226 PMID: 34759799
  371. Kim S, Kim DK, Jeong S, Lee J. The common cellular events in the neurodegenerative diseases and the associated role of endoplasmic reticulum stress. Int J Mol Sci 2022; 23(11): 5894. doi: 10.3390/ijms23115894 PMID: 35682574
  372. Nevell L, Zhang K, Aiello AE, et al. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study. Psychoneuroendocrinology 2014; 43: 62-70. doi: 10.1016/j.psyneuen.2014.01.013 PMID: 24703171
  373. Guedes VA, Lai C, Devoto C, et al. Extracellular vesicle proteins and MicroRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury. Front Pharmacol 2021; 12: 745348. doi: 10.3389/fphar.2021.745348 PMID: 34690777
  374. Han F, Yan S, Shi Y. Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 2013; 8(7): e69340. doi: 10.1371/journal.pone.0069340 PMID: 23894451
  375. Criado-Marrero M, Rein T, Binder EB, Porter JT, Koren J 3rd, Blair LJ. Hsp90 and FKBP51: Complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci 1738; 373(1738): 20160532.
  376. Rajkumar RP. Biomarkers of neurodegeneration in post-traumatic stress disorder: An integrative review. Biomedicines 2023; 11(5): 1465. doi: 10.3390/biomedicines11051465 PMID: 37239136
  377. Mohamed AZ, Cumming P, Srour H, et al. Amyloid pathology fingerprint differentiates post-traumatic stress disorder and traumatic brain injury. Neuroimage Clin 2018; 19: 716-26. doi: 10.1016/j.nicl.2018.05.016 PMID: 30009128
  378. Justice NJ, Huang L, Tian JB, et al. Posttraumatic stress disorder- like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci 2015; 35(6): 2612-23. doi: 10.1523/JNEUROSCI.3333-14.2015 PMID: 25673853
  379. Yamanaka G, Hayashi K, Morishita N, et al. Experimental and clinical investigation of cytokines in migraine: A narrative review. Int J Mol Sci 2023; 24(9): 8343. doi: 10.3390/ijms24098343 PMID: 37176049
  380. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 2019; 10: 1008. doi: 10.3389/fphar.2019.01008 PMID: 31572186
  381. Buckley PF. Neuroinflammation and schizophrenia. Curr Psychiatry Rep 2019; 21(8): 72. doi: 10.1007/s11920-019-1050-z PMID: 31267432
  382. Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci 2020; 21(7): 2431. doi: 10.3390/ijms21072431 PMID: 32244523
  383. Wu S, Wolfe A. Signaling of cytokines is important in regulation of GnRH neurons. Mol Neurobiol 2012; 45(1): 119-25. doi: 10.1007/s12035-011-8224-y PMID: 22161498
  384. Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine regulation of brain cytokines after psychological stress. J Endocr Soc 2019; 3(7): 1302-20. doi: 10.1210/js.2019-00053 PMID: 31259292
  385. Felger JC, Lotrich FE. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013; 246: 199-229. doi: 10.1016/j.neuroscience.2013.04.060 PMID: 23644052
  386. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41. doi: 10.1016/j.biopsych.2008.11.029 PMID: 19150053
  387. Anisman H, Merali Z, Hayley S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: Comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 2008; 85(1): 1-74. doi: 10.1016/j.pneurobio.2008.01.004 PMID: 18346832
  388. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress Anxiety 2013; 30(4): 297-306. doi: 10.1002/da.22084 PMID: 23468190
  389. Correia AS, Vale N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci 2022; 23(15): 8493. doi: 10.3390/ijms23158493 PMID: 35955633
  390. de Oliveira CM, Sakata RK, Issy AM, Gerola LR, Salomão R. Cytokines and pain. Rev Bras Anesthesiol Cytokines Pain 2011; 61(2): 255-9, 260-5, 137-42. doi: 10.1016/S0034-7094(11)70029-0
  391. Candee R, Wilkenson R, Schreiber M, DeCenzo M. The roles of neuroinflammation and glutamatergic excitotoxicity in treatment-resistant depression. JAAPA 2023; 36(4): 12-7. doi: 10.1097/01.JAA.0000921252.57819.4b PMID: 36913608
  392. Jewett BE, Thapa B. Physiology, NMDA receptor. StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
  393. Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328: 121814. doi: 10.1016/j.lfs.2023.121814 PMID: 37236602
  394. Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How oxidative stress induces depression? ASN Neuro 2023; 15: 17590914231181037. doi: 10.1177/17590914231181037 PMID: 37331994
  395. Kalkman HO. Novel treatment targets based on insights in the etiology of depression: Role of IL-6 trans-signaling and stress-induced elevation of glutamate and ATP. Pharmaceuticals 2019; 12(3): 113. doi: 10.3390/ph12030113 PMID: 31362361
  396. Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M. Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 2019; 359: 550-9. doi: 10.1016/j.bbr.2018.10.011 PMID: 30296532
  397. Ye Y, Yao S, Wang R, et al. PI3K/Akt/NF-κB signaling pathway regulates behaviors in adolescent female rats following with neonatal maternal deprivation and chronic mild stress. Behav Brain Res 2019; 362: 199-207. doi: 10.1016/j.bbr.2019.01.008 PMID: 30630016
  398. Afridi R, Suk K. Microglial responses to stress-induced depression: Causes and consequences. Cells 2023; 12(11): 1521. doi: 10.3390/cells12111521 PMID: 37296642
  399. Wang H, He Y, Sun Z, et al. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19(1): 132. doi: 10.1186/s12974-022-02492-0 PMID: 35668399
  400. Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial inflammatory-metabolic pathways and their potential therapeutic implication in major depressive disorder. Front Psychiatry 2022; 13: 871997. doi: 10.3389/fpsyt.2022.871997 PMID: 35782423
  401. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010; 20(2): 87-103. doi: 10.1615/CritRevEukarGeneExpr.v20.i2.10 PMID: 21133840
  402. Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476. doi: 10.3389/fncel.2015.00476 PMID: 26733805
  403. Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia mediated neuroinflammation in Parkinson’s disease. Cells 2023; 12(7): 1012. doi: 10.3390/cells12071012 PMID: 37048085
  404. Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci 2022; 14: 825086. doi: 10.3389/fnagi.2022.825086 PMID: 35401152
  405. Muzio L, Viotti A, Martino G. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy. Front Neurosci 2021; 15: 742065. doi: 10.3389/fnins.2021.742065 PMID: 34630027
  406. Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022; 19(1): 273. doi: 10.1186/s12974-022-02637-1 PMID: 36397116
  407. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021; 17(3): 157-72. doi: 10.1038/s41582-020-00435-y PMID: 33318676
  408. Guo J, Qiu T, Wang L, et al. Microglia loss and astrocyte activation cause dynamic changes in hippocampal 18FDPA-714 uptake in mouse models of depression. Front Cell Neurosci 2022; 16: 802192. doi: 10.3389/fncel.2022.802192 PMID: 35250485
  409. Li S, Fang Y, Zhang Y, et al. Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep 2022; 41(4): 111532. doi: 10.1016/j.celrep.2022.111532 PMID: 36288697
  410. Deng S, Chen J, Wang F. Microglia: A central player in depression. Curr Med Sci 2020; 40(3): 391-400. doi: 10.1007/s11596-020-2193-1 PMID: 32681244
  411. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015; 38(10): 637-58. doi: 10.1016/j.tins.2015.08.001 PMID: 26442697
  412. He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55(9): e13275. doi: 10.1111/cpr.13275 PMID: 35754255
  413. Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front Mol Neurosci 2015; 8: 77. doi: 10.3389/fnmol.2015.00077 PMID: 26733801
  414. Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta Mol Basis Dis 2014; 1842(8): 1186-97. doi: 10.1016/j.bbadis.2013.12.015 PMID: 24412988
  415. Moens U, Kostenko S, Sveinbjørnsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes 2013; 4(2): 101-33. doi: 10.3390/genes4020101 PMID: 24705157
  416. Corrêa SAL, Eales KL. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012; 2012: 1-12. doi: 10.1155/2012/649079 PMID: 22792454
  417. Zhang X, Connelly J, Levitan ES, Sun D, Wang JQ. Calcium/calmodulin–dependent protein kinase II in cerebrovascular diseases. Transl Stroke Res 2021; 12(4): 513-29. doi: 10.1007/s12975-021-00901-9 PMID: 33713030
  418. Wilkaniec A, Gąssowska-Dobrowolska M, Strawski M, Adamczyk A, Czapski GA. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J Neuroinflamm 2018; 15(1): 1. doi: 10.1186/s12974-017-1027-y PMID: 29301548
  419. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 2002; 22(3): 854-62. doi: 10.1523/JNEUROSCI.22-03-00854.2002 PMID: 11826115
  420. Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. Mol Biomed 2023; 4(1): 40. doi: 10.1186/s43556-023-00151-1 PMID: 37938494
  421. Jain M, Singh MK, Shyam H, et al. Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann Neurosci 2021; 28(3-4): 191-200. doi: 10.1177/09727531211070532 PMID: 35341232
  422. Rusek M, Smith J, El-Khatib K, Aikins K, Czuczwar SJ, Pluta R. The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: New potential treatment target. Int J Mol Sci 2023; 24(1): 864. doi: 10.3390/ijms24010864 PMID: 36614305
  423. Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src family kinases facilitate the crosstalk between CGRP and cytokines in sensitizing trigeminal ganglion via transmitting CGRP receptor/PKA pathway. Cells 2022; 11(21): 3498. doi: 10.3390/cells11213498 PMID: 36359895
  424. Nicolas CS, Amici M, Bortolotto ZA, et al. The role of JAK-STAT signaling within the CNS. JAK-STAT 2013; 2(1): e22925. doi: 10.4161/jkst.22925 PMID: 24058789
  425. McGregor G, Irving AJ, Harvey J. Canonical JAK-STAT signaling is pivotal for long-term depression at adult hippocampal temporoammonic-CA1 synapses. FASEB J 2017; 31(8): 3449-66. doi: 10.1096/fj.201601293RR PMID: 28461339
  426. Nicolas CS, Peineau S, Amici M, et al. The Jak/STAT pathway is involved in synaptic plasticity. Neuron 2012; 73(2): 374-90. doi: 10.1016/j.neuron.2011.11.024 PMID: 22284190
  427. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: Anatomical sites and molecular mechanisms. Trends Immunol 2005; 26(9): 485-95. doi: 10.1016/j.it.2005.07.004 PMID: 16039904
  428. Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vascul Biol 2020; 2(1): H1-H18. doi: 10.1530/VB-19-0033 PMID: 32923970
  429. Sommer A, Winner B, Prots I. The Trojan horse-neuroinflammatory impact of T cells in neurodegenerative diseases. Mol Neurodegener 2017; 12(1): 78. doi: 10.1186/s13024-017-0222-8 PMID: 29078813
  430. Miller AH. Depression and immunity: A role for T cells? Brain Behav Immun 2010; 24(1): 1-8. doi: 10.1016/j.bbi.2009.09.009 PMID: 19818725
  431. Hu H, Yang X, He Y, Duan C, Sun N. Psychological stress induces depressive-like behavior associated with bone marrow-derived monocyte infiltration into the hippocampus independent of blood–brain barrier disruption. J Neuroinflamm 2022; 19(1): 208. doi: 10.1186/s12974-022-02569-w PMID: 36002834
  432. Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol 2003; 15(8): 811-2. doi: 10.1046/j.1365-2826.2003.01058.x PMID: 12834443
  433. Varghese FP, Brown ES. The hypothalamic-pituitary-adrenal axis in major depressive disorder: A brief primer for primary care physicians. Prim Care Companion J Clin Psychiatry 2001; 3(4): 151-5. PMID: 15014598
  434. Menke A. Is the HPA axis as target for depression outdated, or is there a new hope? Front Psychiatry 2019; 10: 101. doi: 10.3389/fpsyt.2019.00101 PMID: 30890970
  435. Ceruso A, Martínez-Cengotitabengoa M, Peters-Corbett A, Diaz-Gutierrez MJ, Martínez-Cengotitabengoa M. Alterations of the HPA axis observed in patients with major depressive disorder and their relation to early life stress: A systematic review. Neuropsychobiology 2020; 79(6): 417-27. doi: 10.1159/000506484 PMID: 32203965
  436. Kakehi R, Hori H, Yoshida F, et al. Hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system in adulthood PTSD and childhood maltreatment history. Front Psychiatry 2023; 13: 967779. doi: 10.3389/fpsyt.2022.967779 PMID: 36699501
  437. Stanton LM, Price AJ, Manning EE. Hypothalamic corticotrophin releasing hormone neurons in stress-induced psychopathology: Revaluation of synaptic contributions. J Neuroendocrinol 2023; 35(4): e13268. doi: 10.1111/jne.13268 PMID: 37078436
  438. Mandelli L, Milaneschi Y, Hiles S, Serretti A, Penninx BW. Unhealthy lifestyle impacts on biological systems involved in stress response: Hypothalamic-pituitary-adrenal axis, inflammation and autonomous nervous system. Int Clin Psychopharmacol 2023; 38(3): 127-35. doi: 10.1097/YIC.0000000000000437 PMID: 36730700
  439. Trzeciak P, Herbet M. Role of the intestinal microbiome, intestinal barrier and psychobiotics in depression. Nutrients 2021; 13(3): 927. doi: 10.3390/nu13030927 PMID: 33809367
  440. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9: 392. doi: 10.3389/fncel.2015.00392 PMID: 26528128
  441. Chang L, Wei Y, Hashimoto K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull 2022; 182: 44-56. doi: 10.1016/j.brainresbull.2022.02.004 PMID: 35151796
  442. Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine 2023; 90: 104527. doi: 10.1016/j.ebiom.2023.104527 PMID: 36963238
  443. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020; 107(2): 234-56. doi: 10.1016/j.neuron.2020.06.002 PMID: 32553197
  444. Tubbs JD, Ding J, Baum L, Sham PC. Immune dysregulation in depression: Evidence from genome-wide association. Brain, Behavior, Immunity - Health 2020; 7: 100108. doi: 10.1016/j.bbih.2020.100108 PMID: 34589869
  445. Andersson NW, Goodwin RD, Okkels N, et al. Depression and the risk of severe infections: Prospective analyses on a nationwide representative sample. Int J Epidemiol 2016; 45(1): 131-9. doi: 10.1093/ije/dyv333 PMID: 26708840
  446. Marshall GD Jr. Psychological stress, immune dysfunction, and allergy. Ann Allergy Asthma Immunol 2020; 125(4): 365-6. doi: 10.1016/j.anai.2020.08.020 PMID: 32981592
  447. Reiche EMV, Nunes SOV, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol 2004; 5(10): 617-25. doi: 10.1016/S1470-2045(04)01597-9 PMID: 15465465
  448. Cañas-González B, Fernández-Nistal A, Ramírez JM, Martínez-Fernández V. Influence of stress and depression on the immune system in patients evaluated in an anti-aging unit. Front Psychol 2020; 11: 1844. doi: 10.3389/fpsyg.2020.01844 PMID: 32849086
  449. Geng C, Guo Y, Wang C, et al. Systematic impacts of chronic unpredictable mild stress on metabolomics in rats. Sci Rep 2020; 10(1): 700. doi: 10.1038/s41598-020-57566-x PMID: 31959868
  450. Shaffer C, Westlin C, Quigley KS, Whitfield-Gabrieli S, Barrett LF. Allostasis, action, and affect in depression: Insights from the theory of constructed emotion. Annu Rev Clin Psychol 2022; 18(1): 553-80. doi: 10.1146/annurev-clinpsy-081219-115627 PMID: 35534123
  451. de Oliveira C, Sabbah W, Bernabé E. Allostatic load and depressive symptoms in older adults: An analysis of 12-year panel data. Psychoneuroendocrinology 2023; 152: 106100. doi: 10.1016/j.psyneuen.2023.106100 PMID: 36989564
  452. Epel E. Psychological and metabolic stress: A recipe for accelerated cellular aging? Hormones 2009; 8(1): 7-22. doi: 10.14310/horm.2002.1217 PMID: 19269917
  453. Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: Features of stress physiology and immune homeostasis. Trends Immunol 2017; 38(10): 768-76. doi: 10.1016/j.it.2017.08.002 PMID: 28838855
  454. Fleshner M. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome. Brain Behav Immun 2013; 27(1): 1-7. doi: 10.1016/j.bbi.2012.08.012 PMID: 22964544
  455. Tatayeva R, Ossadchaya E, Sarkulova S, Sembayeva Z, Koigeldinova S. Psychosomatic aspects of the development of comorbid pathology: A review. Med J Islam Repub Iran 2022; 36: 152. doi: 10.47176/mjiri.36.152 PMID: 36636258
  456. Feng L, Li Z, Gu X, Jiang J, Liu X. Psychosomatic disorders in patients with gastrointestinal diseases: Single-center cross-sectional study of 1186 inpatients. Gastroenterol Res Pract 2021; 2021: 1-9. doi: 10.1155/2021/6637084 PMID: 34007268
  457. Witusik A, Mokros Ł, Kamecki K, Pietras T, Bąk B. Astma jako choroba psychosomatyczna. Paul Merkur Lekarski 2022; 50(295): 51-3.
  458. Sabel BA, Wang J, Cárdenas-Morales L, Faiq M, Heim C. Mental stress as consequence and cause of vision loss: The dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J 2018; 9(2): 133-60. doi: 10.1007/s13167-018-0136-8 PMID: 29896314
  459. Friend SF, Nachnani R, Powell SB, Risbrough VB. C-reactive protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55(9-10): 2297-310. doi: 10.1111/ejn.15031 PMID: 33131159
  460. Speelman T, Dale L, Louw A, Verhoog NJD. The association of acute phase proteins in stress and inflammation-induced T2D. Cells 2022; 11(14): 2163. doi: 10.3390/cells11142163 PMID: 35883605
  461. Renner V, Schellong J, Bornstein S, Petrowski K. Stress-induced pro- and anti-inflammatory cytokine concentrations in female PTSD and depressive patients. Transl Psychiatry 2022; 12(1): 158. doi: 10.1038/s41398-022-01921-1 PMID: 35422029
  462. Renner V, Joraschky P, Kirschbaum C, Schellong J, Petrowski K. Pro- and anti-inflammatory cytokines Interleukin-6 and Interleukin-10 predict therapy outcome of female patients with posttraumatic stress disorder. Transl Psychiatry 2022; 12(1): 472. doi: 10.1038/s41398-022-02230-3 PMID: 36351891
  463. Kim IB, Lee JH, Park SC. The relationship between stress, inflammation, and depression. Biomedicines 2022; 10(8): 1929. doi: 10.3390/biomedicines10081929 PMID: 36009476
  464. Anisman H, Merali Z. Cytokines, stress, and depressive illness. Brain Behav Immun 2002; 16(5): 513-24. doi: 10.1016/S0889-1591(02)00009-0 PMID: 12401465
  465. Dion-Albert L, Cadoret A, Doney E, et al. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 2022; 13(1): 164. doi: 10.1038/s41467-021-27604-x PMID: 35013188
  466. Matsuno H, Tsuchimine S, O’Hashi K, et al. Association between vascular endothelial growth factor-mediated blood–brain barrier dysfunction and stress-induced depression. Mol Psychiatry 2022; 27(9): 3822-32. doi: 10.1038/s41380-022-01618-3 PMID: 35618888
  467. Medina-Rodriguez EM, Beurel E. Blood brain barrier and inflammation in depression. Neurobiol Dis 2022; 175: 105926. doi: 10.1016/j.nbd.2022.105926 PMID: 36375722
  468. Dudek KA, Dion-Albert L, Lebel M, et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci 2020; 117(6): 3326-36. doi: 10.1073/pnas.1914655117 PMID: 31974313
  469. Gal Z, Torok D, Gonda X, et al. Inflammation and blood-brain barrier in depression: Interaction of CLDN5 and IL6 gene variants in stress-induced depression. Int J Neuropsychopharmacol 2023; 26(3): 189-97. doi: 10.1093/ijnp/pyac079 PMID: 36472886
  470. Blasco BV, García-Jiménez J, Bodoano I, Gutiérrez-Rojas L. Obesity and depression: Its prevalence and influence as a prognostic factor: A systematic review. Psychiatry Investig 2020; 17(8): 715-24. doi: 10.30773/pi.2020.0099 PMID: 32777922
  471. Ouakinin SRS, Barreira DP, Gois CJ. Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Front Endocrinol 2018; 9: 431. doi: 10.3389/fendo.2018.00431 PMID: 30108549
  472. Eik-Nes TT, Tokatlian A, Raman J, Spirou D, Kvaløy K. Depression, anxiety, and psychosocial stressors across BMI classes: A Norwegian population study - The HUNT study. Front Endocrinol 2022; 13: 886148. doi: 10.3389/fendo.2022.886148 PMID: 36034441
  473. Sarwar H, Rafiqi SI, Ahmad S, et al. Hyperinsulinemia associated depression. Clin Med Insights Endocrinol Diabetes 2022; 15: 11795514221090244. doi: 10.1177/11795514221090244 PMID: 35494421
  474. Lyra e Silva NM, Lam MP, Soares CN, Munoz DP, Milev R, De Felice FG. Insulin resistance as a shared pathogenic mechanism between depression and type 2 diabetes. Front Psychiatry 2019; 10: 57. doi: 10.3389/fpsyt.2019.00057 PMID: 30837902
  475. Kleinridders A, Cai W, Cappellucci L, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci 2015; 112(11): 3463-8. doi: 10.1073/pnas.1500877112 PMID: 25733901
  476. Leonard BE, Wegener G. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatr 2020; 32(1): 1-9. doi: 10.1017/neu.2019.17 PMID: 31186075
  477. Shea S, Lionis C, Kite C, et al. Non-alcoholic fatty liver disease (NAFLD) and potential links to depression, anxiety, and chronic stress. Biomedicines 2021; 9(11): 1697. doi: 10.3390/biomedicines9111697 PMID: 34829926
  478. Choi JM, Chung GE, Kang SJ, et al. Association between anxiety and depression and nonalcoholic fatty liver disease. Front Med 2021; 7: 585618. doi: 10.3389/fmed.2020.585618 PMID: 33537324
  479. Manusov EG, Diego VP, Sheikh K, Laston S, Blangero J, Williams-Blangero S. Non-alcoholic fatty liver disease and depression: Evidence for genotype × environment interaction in mexican americans. Front Psychiatry 2022; 13: 936052. doi: 10.3389/fpsyt.2022.936052 PMID: 35845438
  480. Xiao J, Lim LKE, Ng CH, et al. Is fatty liver associated with depression? a meta-analysis and systematic review on the prevalence, risk factors, and outcomes of depression and non-alcoholic fatty liver disease. Front Med 2021; 8: 691696. doi: 10.3389/fmed.2021.691696 PMID: 34277666
  481. Rubio-Guerra AF, Rodriguez-Lopez L, Vargas-Ayala G, Huerta-Ramirez S, Serna DC, Lozano-Nuevo JJ. Depression increases the risk for uncontrolled hypertension. Exp Clin Cardiol 2013; 18(1): 10-2. PMID: 24294029
  482. Kretchy IA, Owusu-Daaku FT, Danquah SA. Mental health in hypertension: Assessing symptoms of anxiety, depression and stress on anti-hypertensive medication adherence. Int J Ment Health Syst 2014; 8(1): 25. doi: 10.1186/1752-4458-8-25 PMID: 24987456
  483. Cohen BE, Edmondson D, Kronish IM. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Am J Hypertens 2015; 28(11): 1295-302. doi: 10.1093/ajh/hpv047 PMID: 25911639
  484. Carnovale C, Perrotta C, Baldelli S, et al. Antihypertensive drugs and brain function: Mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2023; 119(3): 647-67. doi: 10.1093/cvr/cvac110 PMID: 35895876
  485. Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13: 1053136. doi: 10.3389/fimmu.2022.1053136 PMID: 36761172
  486. Yao B, Meng L, Hao M, Zhang Y, Gong T, Guo Z. Chronic stress: A critical risk factor for atherosclerosis. J Int Med Res 2019; 47(4): 1429-40. doi: 10.1177/0300060519826820 PMID: 30799666
  487. Gao S, Wang X, Meng L, et al. Recent progress of chronic stress in the development of atherosclerosis. Oxid Med Cell Longev 2022; 2022: 1-10. doi: 10.1155/2022/4121173 PMID: 35300174
  488. Riahi SM, Yousefi A, Saeedi F, Martin SS. Associations of emotional social support, depressive symptoms, chronic stress, and anxiety with hard cardiovascular disease events in the United States: the multi-ethnic study of atherosclerosis (MESA). BMC Cardiovasc Disord 2023; 23(1): 236. doi: 10.1186/s12872-023-03195-x PMID: 37142978
  489. Jee YH, Chang H, Jung KJ, Jee SH. Cohort study on the effects of depression on atherosclerotic cardiovascular disease risk in Korea. BMJ Open 2019; 9(6): e026913. doi: 10.1136/bmjopen-2018-026913 PMID: 31227532
  490. Li Z, Tong X, Ma Y, Bao T, Yue J. Prevalence of depression in patients with sarcopenia and correlation between the two diseases: Systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022; 13(1): 128-44. doi: 10.1002/jcsm.12908 PMID: 34997702
  491. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing 2017; 46(5): 738-46. doi: 10.1093/ageing/afx094 PMID: 28633395
  492. Gao K, Ma WZ, Huck S, et al. Association between sarcopenia and depressive symptoms in chinese older adults: Evidence from the China health and retirement longitudinal study. Front Med 2021; 8: 755705. doi: 10.3389/fmed.2021.755705 PMID: 34869454
  493. Shiba T, Sato R, Sawaya Y, et al. Sarcopenia with depression presents a more severe disability than only sarcopenia among japanese older adults in need of long-term care. Medicina 2023; 59(6): 1095. doi: 10.3390/medicina59061095 PMID: 37374299
  494. Fiske A, Wetherell JL, Gatz M. Depression in older adults. Annu Rev Clin Psychol 2009; 5(1): 363-89. doi: 10.1146/annurev.clinpsy.032408.153621 PMID: 19327033
  495. Zenebe Y, Akele B. Prevalence and determinants of depression among old age: A systematic review and meta-analysis. Ann Gen Psychiatry 2021; 20(1): 55. doi: 10.1186/s12991-021-00375-x PMID: 34922595
  496. Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: Role of aging processes and treatment implications. Transl Psychiatry 2023; 13(1): 160. doi: 10.1038/s41398-023-02464-9 PMID: 37160884
  497. Thapa DK, Visentin DC, Kornhaber R, Cleary M. Prevalence and factors associated with depression, anxiety, and stress symptoms among older adults: A cross-sectional population-based study. Nurs Health Sci 2020; 22(4): 1139-52. doi: 10.1111/nhs.12783 PMID: 33026688
  498. Vishwakarma D, Gaidhane A, Bhoi SR. Depression and its associated factors among the elderly population in India: A review. Cureus 2023; 15(6): e41013. doi: 10.7759/cureus.41013 PMID: 37519597
  499. Wong TS, Li G, Li S, et al. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8(1): 177. doi: 10.1038/s41392-023-01427-2 PMID: 37137892
  500. Stratz C, Anakwue J, Bhatia H, Pitz S, Fiebich BL. Anti-inflammatory effects of 5-HT3 receptor antagonists in interleukin-1beta stimulated primary human chondrocytes. Int Immunopharmacol 2014; 22(1): 160-6. doi: 10.1016/j.intimp.2014.06.003 PMID: 24975660
  501. Irving H, Turek I, Kettle C, Yaakob N. Tapping into 5-HT3 receptors to modify metabolic and immune responses. Int J Mol Sci 2021; 22(21): 11910. doi: 10.3390/ijms222111910 PMID: 34769340
  502. Lu J, Wu W. Cholinergic modulation of the immune system – A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93: 107391. doi: 10.1016/j.intimp.2021.107391 PMID: 33548577
  503. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol Psychiatry 2022; 28(8): 3243-56. PMID: 35854107
  504. Jamu IM, Okamoto H. Recent advances in understanding adverse effects associated with drugs targeting the serotonin receptor, 5-HT GPCR. Front Global Women’s Health 2022; 3: 1012463. doi: 10.3389/fgwh.2022.1012463 PMID: 36619589
  505. Ślifirski G, Król M, Turło J. 5-HT receptors and the development of new antidepressants. Int J Mol Sci 2021; 22(16): 9015. doi: 10.3390/ijms22169015 PMID: 34445721
  506. Lin J, Liu W, Guan J, et al. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci 2023; 15: 1124112. doi: 10.3389/fnsyn.2023.1124112 PMID: 37228487
  507. Wilson DR, Warise L. Cytokines and their role in depression. Perspect Psychiatr Care 2008; 44(4): 285-9. doi: 10.1111/j.1744-6163.2008.00188.x PMID: 18826467
  508. Sacramento PM, Monteiro C, Dias ASO, et al. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients. Eur J Immunol 2018; 48(8): 1376-88. doi: 10.1002/eji.201847525 PMID: 29719048
  509. Ramírez LA, Pérez-Padilla EA, García-Oscos F, Salgado H, Atzori M, Pineda JC. A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary-adrenal axis. Biomédica 2018; 38(3): 437-50. PMID: 30335249
  510. Köhler-Forsberg O, N Lydholm C, Hjorthøj C, Nordentoft M, Mors O, Benros ME. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr Scand 2019; 139(5): 404-19. doi: 10.1111/acps.13016 PMID: 30834514
  511. Simon MS, Arteaga-Henríquez G, Fouad Algendy A, Siepmann T, Illigens BMW. Anti-inflammatory treatment efficacy in major depressive disorder: A systematic review of meta-analyses. Neuropsychiatr Dis Treat 2023; 19: 1-25. doi: 10.2147/NDT.S385117 PMID: 36636142
  512. Fanibunda SE, Deb S, Maniyadath B, et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis. Proc Natl Acad Sci 2019; 116(22): 11028-37. doi: 10.1073/pnas.1821332116 PMID: 31072928
  513. Tatum MC, Ooi FK, Chikka MR, et al. Neuronal serotonin release triggers the heat shock response in C. Elegans in the absence of temperature increase. Curr Biol 2015; 25(2): 163-74. doi: 10.1016/j.cub.2014.11.040 PMID: 25557666
  514. Yang Y, Huang H, Xu Z, Duan J. Serotonin and its receptor as a new antioxidant therapeutic target for diabetic kidney disease. J Diabetes Res 2017; 2017: 1-9. doi: 10.1155/2017/7680576 PMID: 28929122
  515. Battal D, Yalin S, Eker ED, et al. Possible role of selective serotonin reuptake inhibitor sertraline on oxidative stress responses. Eur Rev Med Pharmacol Sci 2014; 18(4): 477-84. PMID: 24610613
  516. Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther 2018; 24(11): 994-1003. doi: 10.1111/cns.12835 PMID: 29508560
  517. Han KM, Ham BJ. How inflammation affects the brain in depression: A review of functional and structural MRI studies. J Clin Neurol 2021; 17(4): 503-15. doi: 10.3988/jcn.2021.17.4.503 PMID: 34595858
  518. Goldsmith DR, Bekhbat M, Mehta ND, Felger JC. Inflammation-related functional and structural dysconnectivity as a pathway to psychopathology. Biol Psychiatry 2023; 93(5): 405-18. doi: 10.1016/j.biopsych.2022.11.003 PMID: 36725140
  519. Ermakov EA, Mednova IA, Boiko AS, Buneva VN, Ivanova SA. Chemokine dysregulation and neuroinflammation in schizophrenia: A systematic review. Int J Mol Sci 2023; 24(3): 2215. doi: 10.3390/ijms24032215 PMID: 36768537
  520. Patlola SR, Donohoe G, McKernan DP. The relationship between inflammatory biomarkers and cognitive dysfunction in patients with schizophrenia: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121: 110668. doi: 10.1016/j.pnpbp.2022.110668 PMID: 36283512
  521. Messina A, Concerto C, Rodolico A, Petralia A, Caraci F, Signorelli MS. Is it time for a paradigm shift in the treatment of schizophrenia? the use of inflammation-reducing and neuroprotective drugs-a review. Brain Sci 2023; 13(6): 957. doi: 10.3390/brainsci13060957 PMID: 37371435
  522. Kronfol Z, Remick DG. Cytokines and the brain: Implications for clinical psychiatry. Am J Psychiat 2000; 157(5): 683-94. doi: 10.1176/appi.ajp.157.5.683 PMID: 10784457
  523. Abg Abd Wahab DY, Gau CH, Zakaria R, et al. Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour. BioMed Res Int 2019; 2019: 1-10. doi: 10.1155/2019/1767203 PMID: 31815123

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers