Структура и морфология материала на основе вольфрама первой стенки дивертора токамака до и после облучения водородной плазмой
- Авторы: Поляков Д.Д.1,2, Воронин А.В.1, Нащекин А.В.1, Левин А.А.1
-
Учреждения:
- Физико-технический институт им. А.Ф. Иоффе
- Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В. И. Ульянова (Ленина)
- Выпуск: № 2 (2025)
- Страницы: 101-118
- Раздел: Статьи
- URL: https://vietnamjournal.ru/1028-0960/article/view/686837
- DOI: https://doi.org/10.31857/S1028096025020133
- EDN: https://elibrary.ru/EIJZRE
- ID: 686837
Цитировать
Аннотация
Описаны результаты исследования морфологии и структуры пластин марки “Вольфрам Металлопорошковый” (группа компаний “Спецметаллмастер” (ГК “СММ”)), применявшихся в качестве защитных плиток в нижнем диверторе токамака “Глобус-М” и подвергшихся дополнительной обработке водородной плазмой коаксиального ускорителя c расстояний 50 и 260 мм при 5, 10 и 20 циклах облучения. Морфология и элементный состав поверхности пластин определяли методами растровой электронной микроскопии и энергодисперсионной рентгеновской спектроскопии соответственно. Структуру облученного приповерхностного слоя пластин на глубине проникновения рентгеновских лучей до ~1.4 мкм анализировали по рентгенодифракционным данным графическими методами профильного анализа Вильямсона–Холла и “размер кристаллита–микродеформация”, адаптированным с учетом наблюдаемого псевдофойгтовского (pseudo-Voigt) типа рентгеновских отражений. Кристаллическая структура этого слоя уточнена с помощью метода Ритвельда. Асимметрия отражений вольфрама после обработки в плазме была описана моделью с двумя (для образцов, облученных с расстояния 260 мм) и тремя (для расстояния 50 мм) кристаллическими фазами W с одинаковой кубической симметрией, но с несколько разным параметром элементарной ячейки и разными значениями среднего размера кристаллитов и абсолютного среднего значения микродеформации в них.
Полный текст

Об авторах
Д. Д. Поляков
Физико-технический институт им. А.Ф. Иоффе; Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В. И. Ульянова (Ленина)
Автор, ответственный за переписку.
Email: aleksandr.a.levin@mail.ioffe.ru
Россия, Санкт-Петербург; Санкт-Петербург
А. В. Воронин
Физико-технический институт им. А.Ф. Иоффе
Email: aleksandr.a.levin@mail.ioffe.ru
Россия, Санкт-Петербург
А. В. Нащекин
Физико-технический институт им. А.Ф. Иоффе
Email: aleksandr.a.levin@mail.ioffe.ru
Россия, Санкт-Петербург
А. А. Левин
Физико-технический институт им. А.Ф. Иоффе
Email: aleksandr.a.levin@mail.ioffe.ru
Россия, Санкт-Петербург
Список литературы
- Будаев В.П. // ВАНТ. Сер. Термоядерный синтез. 2015. Т. 38. № 4. С. 5. https://www.doi.org/10.21517/0202-3822-2015-38-4-5-33
- Воронин А.В., Александров А.Е., Бер Б.Я., Брунков П.Н., Борматов A.A., Гусев В.К., Демина Е.В., Новохацкий A.Н., Павлов С.И., Прусакова М.Д., Сотникова Г.Ю., Яговкина М.А. // ЖТФ. 2016. Т. 86. № 3. С. 51.
- Seyedhabashi M.M., Tafreshi M.A., Bidabadi B.S., Shafiei S., Abdisaray A. // Appl. Radiat. Isot. 2019. V. 154. P. 108875. https://www.doi.org/10.1016/j.apradiso.2019.108875
- Bhuyan M., Mohanty S.R., Rao C.V.S., Rayjada P.A., Raole P.M. // Appl. Surf. Sci. 2013. V. 264. P. 674. https://www.doi.org/10.1016/j.apsusc.2012.10.093
- Parish C.M., Wang K., Doerner R.P., Baldwin M.J. // Scr. Mater. 2017. V. 127. P. 132. https://www.doi.org/10.1016/j.scriptamat.2016.09.018
- Javadi S., Ouyang B., Zhang Z., Ghoranneviss M., Elahi A.S., Rawat R.S. // Appl. Surf. Sci. 2018. V. 443. P. 311. https://www.doi.org/10.1016/j.apsusc.2018.03.039
- Makhlaj V.A., Garkusha I.E., Malykhin S.V., Pugachov A.T., Landman I., Linke J., Pestchanyi S., Chebotarev V.V., Tereshin V.I. // Phys. Scr. 2009. V. 2009. № T138. P. 014060. https://www.doi.org/10.1088/0031-8949/2009/T138/014060
- Makhlaj V.A., Garkusha I.E., Linke J., Malykhin S.V., Aksenov N.N., Byrka O.V., Herashchenko S.S., Surovitskiy S.V., Wirtz M. // Nucl. Mat. Energ. 2016. V. 9. P. 116. https://www.doi.org/10.1016/j.nme.2016.04.001
- Арутюнян З.Р., Огородникова О.В., Аксенова А.С., Гаспарян Ю.М., Ефимов В.С., Харьков М.М., Казиев А.В., Волков Н.В. // Поверхность. Рентген. cинхротр. нейтрон. исслед. 2020. Т. 12. № 12. С. 21. https://www.doi.org/10.31857/S1028096020120067
- Wang K., Doerner R.P., Baldwin M.J., Meyer F.W., Bannister M.E., Darbal A., Stroud R., Parish C.M. // Sci. Rep. 2017. V. 7. № 42315. P. 1. https://www.doi.org/10.1038/srep42315
- Kozushkina A., Pavlov S.I., Voronin A.V., Sokolov R.V., Levin A.A. // J. Phys.: Conf. Ser. 2020. V. 1697. P. 01234. https://www.doi.org/10.1088/1742-6596/1697/1/012134
- Herashchenko S.S., Girka O.I., Surovitskiy S.V., Makhlai V.A., Malykhin S.V., Myroshnyk M.O., Bizyukov I.O., Aksenov N.N., Borisova S.S., Bizyukov O.A., Garkusha I.E. // Nucl. Instr. Meth. B. 2019. V. 440. P. 82. https://www.doi.org/10.1016/j.nimb.2018.12.010
- Tokitani M., Miyamoto M., Masuzaki S., Hatano Y., Lee S.E., Oya Y., Otsuka T., Oyaidzu M., Kurotaki H., Suzuki T., Hamaguchi D., Hayashi T., Asakura N., Widdowson A., Jachmich S., Rubel M. // Phys. Scr. 2020. V. 2020. № T171. P. 014010. https://www.doi.org/10.1088/1402-4896/ab3d09
- Zhao C., Chen Y., Song J., Mei X., Pan Q., Zhang R., Yang L., Zhao F., Li J., Wang D. // Plasma Phys. Control. Fusion. 2023. V. 65. № 1. P. 015012. https://www.doi.org/10.1088/1361-6587/aca4f6
- Guo W., Wang S., Xu K., Zhu Y., Wang X.-X., Cheng L., Yuan Y., Fu E., Guo L., De Temmerman G., Lu G.-H. // Phys. Scr. 2020. V. 2020. № T171. 014004. https://www.doi.org/10.1088/1402-4896/ab36d8
- Gago M., Kreter A., Unterberg B., Wirtz M. // Phys. Scr. 2020. V. 2020. № T171. P. 014007. https://www.doi.org/10.1088/1402-4896/ab3bd9
- Kengesbekov A., Rakhdilov B., Satbaeva Z. Investigation of Microstructure and Mechanical Properties of Tungsten Irradiated by Helium Plasma. Preprint 2023111205. 2023. https://www.doi.org/10.20944/preprints202311.1205.v1
- Khan A., de Temmerman G., Kajita S., Greuner H., Balden M., Hunger K., Ohno N., Hwangbo D., Tomita Y., Tokitani M., Nagata D., Yajima M. // Phys. Scr. 2020. № T171. P. 014050. https://www.doi.org/10.1088/1402-4896/ab52c6
- Гусев В.К., Голант В.Е., Гусаков Е.З., Дьяченко В.В., Ирзак М.А., Минаев В.Б., Мухин Е.Е., Новохацкий А.Н., Подушникова К.А., Раздобарин Г.Т., Сахаров Н.В., Трегубова Е.Н., Узлов В.С., Щербинин О.Н., Беляков В.А., Кавин А.А., Косцов Ю.А., Кузьмин Е.Г., Сойкин В.Ф., Кузнецов Е.А., Ягнов В.А. // ЖТФ. 1999. Т. 69. № 9. С. 58.
- DIFFRAC.EVA. (2024) Software for the analysis of 1D and 2D X-ray datasets including visualization, data reduction, phase identification and quantification, statistical evaluation. Bruker AXS. Karlsruhe. Germany. https://www.bruker.com/ru/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.htm. Cited 5 Juni 2024
- International Centre for Diffraction Data (ICDD). Powder Diffraction File-2 (2014) Newton Square, PA, USA. https://www.icdd.com/. Cited 5 Juni 2024
- Maunders C., Etheridge J., Wright N., Whitfield H.J. // Acta. Crystallogr. B. 2005. V. 61. № 1. 154. https://www.doi.org/10.1107/S0108768105001667
- Terlan B., Levin A.A., Börrnert F., Simon F., Oschatz M., Schmidt M., Cardoso-Gil R., Lorenz T., Baburin I.A., Joswig J.-O., Eychmüller A. // Chem. Mater. 2015. V. 27. № 14. P. 5106. https://www.doi.org/10.1021/acs.chemmater.5b01
- Terlan B., Levin A.A., Börrnert F., Zeisner J., Kataev V., Schmidt M., Eychmüller A. // Eur. J. Inorg. Chem. 2016. V. 6. № 21. P. 3460. https://www.doi.org/10.1002/ejic.201600315
- Langford J.I., Cernik R.J., Louer D. // J. Appl. Crystallogr. 1991. V. 24. № 5. P. 913. https://www.doi.org/10.1107/S0021889891004375
- Levin A.A. Program SizeCr for calculation of the microstructure parameters from X-ray diffraction data. 2022. https://www.doi.org/10.13140/RG.2.2.15922.89280
- Rehani B.R., Joshi P.B., Lad K.N., Pratap A. // Indian J. Pure Appl. Phys. 2006. V. 44. № 2. P. 157.
- Scherrer P. // Nachr. Kӧnigl. Ges. Wiss. Gӧttingen. 1918. B. 26. S. 98.
- Stokes A.R., Wilson A.J.C. // Proc. Phys. Soc. London. 1944. V. 56. № 3. P. 174. https://www.doi.org/10.1088/0959-5309/56/3/303
- Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210. https://www.doi.org/10.1107/S1600576718000183
- Berger H. // X-ray Spectrom. 1986. V. 15. № 4. P. 241. https://www.doi.org/10.1002/xrs.1300150405
- Pitschke W., Hermann H., Mattern N. // Powder Diffr. 1993. V. 8. № 2, P. 74. https://www.doi.org/10.1017/S0885715600017875
- Rietveld H.M. // Z. Kristallogr. 2010. B. 225. № 12. S. 545. https://www.doi.org/10.1524/zkri.2010.1356
- Dubrovinsky L.S., Saxena S.K. // Phys. Chem. Miner. 1997. V. 24. № 8. P. 547. https://www.doi.org/10.1007/s002690050070
- Dollase W.A. // J. Appl. Crystallogr. 1986. V. 19. № 4. P. 267. https://www.doi.org/10.1107/S0021889886089458
- Järvinen M. // J. Appl. Crystallogr. 1993. V. 26. № 4. P. 525. https://www.doi.org/10.1107/S0021889893001219
- Cheary R.W., Coelho A.A. // J. Appl. Crystallogr. 1992. V. 25. № 2. P. 109. https://www.doi.org/10.1107/S0021889891010804
- Balzar D., Voigt-function model in diffraction line-broadening analysis. // Defect and Microstructure Analysis by Diffraction. / Ed. Snyder R.L., Fiala J., Bunge H.J. Oxford: IUCr, Oxford Uni. Press, 1999. P. 94.
- Balashova E., Levin A.A., Fokin A., Redkov A., Krichevtsov B. // Crystals. 2021. V. 11. № 11. P. 1278. https://www.doi.org/10.3390/cryst11111278
- Bérar J.-F., Lelann P.J. // J. Appl. Crystallogr. 1991. V. 24. № 1. P. 1. https://www.doi.org/10.1107/S0021889890008391
- Andreev Yu.G. // J. Appl. Crystallogr. 1994. V. 27. № 2. P. 288. https://www.doi.org/10.1107/S002188989300891X
- Levin A.A. Program RietESD for correction of estimated standard deviations obtained in Rietveld-refinement programs. 2022. https://www.doi.org/10.13140/RG.2.2.10562.04800
- Narykova M.V., Levin A.A., Prasolov N.D., Lihachev A.I., Kardashev B.K., Kadomtsev A.G., Panfilov A.G., Sokolov R.V., Brunkov P.N., Sultanov M.M., Kuryanov V.N., Tyshkevich V.N. // Crystals. 2022. V. 12. № 2. P. 166. https://www.doi.org/10.3390/cryst12020166
- Hill R.J., Fischer R.X. // J. Appl. Crystallogr. 1990. V. 23. № 5. P. 462. https://www.doi.org/10.1107/S0021889890006094
- Pecharsky V.K., Zavalij P.Y. Preferred orientation. // Fundamentals of Powder Diffraction and Structural Characterization of Materials. 2nd edition. New York, USA: Springer Science+Business Media LLC, 2009. P. 194.
Дополнительные файлы
