Solid Solutions of Complex Hydrosulfates K9H7(SO4)8·H2O–Rb9H7(SO4)8·H2O

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Crystals of a series of solid solutions (KxRb1–x)9H7(SO4)8·H2O have been studied, and the extreme member of the series Rb9H7(SO4)8·H2O apparently does not exist under normal conditions. Solid solutions are limited by the composition x = 0.19, which corresponds to 81% rubidium content in the cationic composition. The lattice parameters of solid solutions have been determined, thermal properties and dehydration processes of crystallization water for both single-crystal and polycrystalline samples have been studied. The conductivity of samples with the maximum rubidium content has been investigated. It has been shown that the mechanism of occurrence of the state with high conductivity in solid solutions is similar to that in K9H7(SO4)8·H2O and is related to the dehydration process and stabilization of the dehydrated structure.

Sobre autores

I. Timakov

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Autor responsável pela correspondência
Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

V. Komornikov

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

E. Selezneva

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

V. Manomenova

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

E. Rudneva

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

O. Iliina

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

S. Baskakova

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

V. Grebenev

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Email: vadim_grebenev@mail.ru
Rússia, Moscow, 119333

Bibliografia

  1. Baranov A.I. // Crystallogr. Rep. 2023. V. 48. № 6. P. 1012. https://doi.org/10.1134/1.1627443
  2. Kreuer K.D. // Solid State Ionics. 1997. V. 94. P. 55. https://doi.org/10.1016/S0167-2738(96)00608-X
  3. Haile S.M., Chisholm C.R.I., Sasaki K., Boysen D.A., Uda T. // Faraday Discussions. 2007. V. 134. P. 17. https://doi.org/10.1039/b604311a
  4. Макарова И.П. // Физика твердого тела. 2015. Т. 57. № 3. С. 432. http://journals.ioffe.ru/articles/viewPDF/41498
  5. Haile S.M., Boysen D.A., Chisholm, C.R.I., Merle R.B. // Nature. 2001. V. 410. P. 910. https://doi.org/10.1038/35073536
  6. Dang D., Zhao B., Chen D., Yoo S., Lai S.Y., Doyle B., Dai S., Chen Y., Qu C., Zhang L., Liao S., Liu M. // J. Power Sources. 2017. V. 359. P. 1. https://doi.org/10.1016/j.jpowsour.2017.05.023
  7. Bagryantseva I.N., Ponomareva V.G., Lazareva N.P. // Solid State Ionics. 2019. V. 329. P. 61. https://doi.org/10.1016/j.ssi.2018.11.010
  8. Коморников В.А., Тимаков И.С., Зайнуллин О.Б., Гребенев В.В., Макарова И.П., Селезнева Е.В. // Кристаллография. 2018. Т. 63. № 6. С. 967. https://doi.org/10.1134/S0023476118060188
  9. Komornikov V.A., Timakov I.S., Makarova I.P., Selezneva E.V., Grebenev V.V., Zainullin O.B. // J. Phys.: Conf. Ser. 2020. V. 1686. P. 012048. https://doi.org/10.1088/1742-6596/1686/1/012048
  10. Timakov I.S., Komornikov V.A., Grebenev V.V. // Chem. Phys. 2022. V. 563. P. 111680. https://doi.org/10.1016/j.chemphys.2022.111680
  11. Коморников В.А., Гребенев В.В., Тимаков И.С., Ксенофонтов Д.А., Андреев П.В., Макарова И.П., Селезнева Е.В. // Кристаллография. 2019. Т. 64. № 3. С. 447. https://doi.org/10.1134/S0023476119060109
  12. Тимаков И.С., Гребенев В.В., Коморников В.А., Зайнуллин О.Б., Макарова И.П., Селезнева Е.В., Кузьмин И.И. // Кристаллография. 2022. Т. 67. № 3. С. 488. https://doi.org/10.31857/S0023476122030225
  13. Cowan L.A., Morcos R.M., Hatada N., Navrotsky A., Haile S.M. // Solid State Ionics. 2008. V. 179. № 9–10. P. 305. https://doi.org/10.1016/j.ssi.2008.02.016
  14. Panithipongwut C., Haile S.M. // Solid State Ionics. 2012. V. 213. P. 53. https://doi.org/10.1016/j.ssi.2011.10.016
  15. Kowalski C.P., Chaijaroen P., Kaewniyom F. // J. Met. Mater. Miner. 2021. V. 31. P. 57. https://doi.org/10.55713/jmmm.v31i1.1008
  16. Selezneva E.V., Makarova I.P., Malyshkina I.A., Gavrilova N.D., Grebenev V.V., Novik V.K., and Komornikov V.A. // Acta Crystallogr. B. 2017. V. 73. № 6. P. 1105. https://doi.org/10.1107/S2052520617012847
  17. Petříček V., Dušek M., Palatinus L. // Z. Krist. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  18. Makarova I.P., Chernaya T.S., Grebenev V.V., Dolbinina V.V., Verin I.A., Simonov A.A. // Crystallogr. Rep. 2011. V. 56. № 6. P. 994. https://doi.org/10.1134/S1063774511060174
  19. Baranov A.I., Sinitsyn V.V., Vinnichenko V.Y., Jones D.J., Bonnet B. // Solid State Ionics. 1997. V. 97. P. 153. https://doi.org/10.1016/S0167-2738(97)00061-1
  20. Makarova I., Grebenev V., Dmitricheva E., Dolbinina V., Chernyshov D. // Acta Crystallogr. B. 2014. V. 70. P. 218. https://doi.org/10.1107/S2052520613029892

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025