Enzyme a Biosynthesis System on Manifestation of Metabolic Stress and Glutathione System in the CNS under Aluminium Neurotoxicosis
- Authors: Semenovich D.S.1, Gurinovich V.A.2, Lukiyenko E.P.2, Katkovskaya I.N.2, Titko O.V.2, Kanunnikova N.P.3, Moiseenok A.G.2
-
Affiliations:
- Belozersky Research Institute of Physico-Chemical Biology MSU
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus
- Yanka Kupala’s Grodno State University
- Issue: Vol 40, No 1 (2023)
- Pages: 48-58
- Section: Experimental Articles
- URL: https://vietnamjournal.ru/1027-8133/article/view/653956
- DOI: https://doi.org/10.31857/S1027813323010181
- EDN: https://elibrary.ru/ERGYVL
- ID: 653956
Cite item
Abstract
Alzheimer’s-like disease was simulated in female adult Wistar CRL(WI) WUBR rats by 6-week intragastric administration of aluminium chloride at a dose of 200 mg/kg body mass. In the presence of developed oxidative stress (OS), we found a decrease in the activities of tricarboxylic acid cycle (TCA cycle) enzymes and an increase in the activities of pentose phosphate pathway (PPP) dehydrogenases as well as a reduction of SH-and SS-groups in proteins (P) along with the increased SH/SS ratio and glutathionylation with simultaneous decreases of glutathione (GSH) and the GSH/GSSG ratio and its redox potential in the brain hemispheres. The glutathione system enzymes were changed multidirectionally, with glutathione reductase remaining stable. Decreased activities of GSH biosynthesis enzymes and cysteine content were noticed. The intragastric administration of the CoA biosynthesis modulators D-panthenol (PL), D-pantethine or D-homopantothenate (HPA) at a dose of 200 mg/kg since the 5th week of the experiment caused either reduction or leveling of OS manifestations in blood plasma, an increase in acetyl cholinesterase, normalization of the activities of TCA cycle and PPP enzymes, P-SH level (not the SH/SS ratio) and a considerable reduction of S-glutathionylation as well as increases in GSH level, the GSH/GSSG ratio and redox potential in the hemispheres. The effect of CoA system modulators was manifested in activation of glutathione transferase, a decrease of glutathione peroxidase and less evident activation of GSH biosynthesis enzymes (PL) although they contributed to the elevation of cysteine content due to the reduced protein S-cysteinylation. The levels and the ratio of CoA/acetyl-CoA (except for PL) were not changed by toxicosis and the OS modulators. The feasibility of non-conenzyme effects was confirmed by the administration of HPA. The phenomenon of redox activity of the CoA biosynthesis modulators with clearly directional effects on the glutathione system and the TCA cycle and PPP enzymes during alleviation of OS and aluminium neurotoxicosis is discussed.
About the authors
D. S. Semenovich
Belozersky Research Institute of Physico-Chemical Biology MSU
Email: nchjournal@gmail.com
Russia, Moscow
V. A. Gurinovich
Institute of Biochemistry of Biologically Active Substances, NAS of Belarus
Email: nchjournal@gmail.com
Belarus, Grodno
E. P. Lukiyenko
Institute of Biochemistry of Biologically Active Substances, NAS of Belarus
Email: nchjournal@gmail.com
Belarus, Grodno
I. N. Katkovskaya
Institute of Biochemistry of Biologically Active Substances, NAS of Belarus
Email: nchjournal@gmail.com
Belarus, Grodno
O. V. Titko
Institute of Biochemistry of Biologically Active Substances, NAS of Belarus
Email: nchjournal@gmail.com
Belarus, Grodno
N. P. Kanunnikova
Yanka Kupala’s Grodno State University
Email: nchjournal@gmail.com
Belarus, Grodno
A. G. Moiseenok
Institute of Biochemistry of Biologically Active Substances, NAS of Belarus
Email: nchjournal@gmail.com
Belarus, Grodno
References
- Pietrocola F., Galluzzi L., Bravo-San Pedro J.M., Madeo F., Kroemer G. // Cell Metabolism. 2015. V. 21. № 6. P. 805–821.
- Szutowicz A., Bielarczyk H., Ronowska A., Gul-Hinc S., Klimaszewska-Łata J., Dyś A., Zyśk M., Pawełczyk T. // Biochem. Soc. Trans. 2014. V. 42. № 4. P. 1101–1116.
- Szutowicz A., Bielarczyk H., Ronowska A. // Neurochem. Res. 2013 V. 38. № 8. P. 1523–1542.
- Ronowska A., Szutowicz A., Bielarczyk H., Gul-Hinc S., Klimaszewska-Łata J., Dyś A., Zyśk M., Jankowska-Kulawy A. // Front. Cell. Neurosci. 2018. V. 10. № 12. P. 169.
- Ferreira-Vieira T.H., Guimaraes I.M., Silva F.R., Ribeiro F.M. // Current Neuropharmacol. 2016. V. 14. № 1. P. 101–115.
- Klimaszewska-Łata J., Gul-Hinc S., Bielarczyk H., Ronowska A., Zyśk M., Grużewska K., Pawełczyk T., Szutowicz A. // J. Neurochem. 2015. V. 133. № 2. P. 284–297.
- Venco P., Dusi S., Valletta L., Tiranti V. // Biochem. Soc. Trans. 2014. V. 42. № 4. P. 1069–1074.
- Paudel R., Li A., Wiethoff S., Bandopadhyay R., Bhatia K., Silva R., Houlden H., Holton J. L. // Acta Neuropathol. Commun. 2015. V. 3. P. 39.
- Hogarth P. // J. Movement Disorders. 2015 V. 8. № 1. P. 1–13.
- Moiseenok A.G. Omelyanchik S.N., Gurinovich V.A., Evkovich I.N., Petukhova T.P. // News Biomedical Sciences. 2005. V. 1. P. 51–55.
- Moiseenok A.G., Omel’yanchik S.N., Sheval’e A.A., Katkovskaya I.N., Elchaninova M.A., Pekhovskaya T.A., Kovalenchik I.L. // Neurochem. J. 2010. V. 4. № 1. P. 30–34.
- Stepanichev M., Libe M.L., Chernyshevskaya I.A., Moiseenok A.G., Gulyaeva N.V. // Neurochem. J. 2007. V. 1. № 3. P. 244–248.
- Слышенков В.С., Кирко С.Н., Мойсеёнок А.Г. // Весцi НАН Беларусi. 2005. № 2. С. 78–81.
- Мойсеёнок А.Г. // Биохимия и молекулярная биология: сб. науч. тр. Минск. 2019. Вып. 3. С. 91–93.
- Zhang Y.-M., Chohnan S., Virga K.G., Stevens R.D., Ilkayeva O.R., Wenner B.R., Bain J.R., Newgard C.B., Lee R.E., Rock C.O., Jackowski S. // Chemistry & Biology. 2007. V. 14. P. 291–302.
- Prakash A., Kumar A. // Basic Clin. Pharm. Toxicol. 2009. V. 105. P. 98–104.
- Aboelwata H.R., El-Kott A.F., Abd-Ella E.M., Yousef H.N. // Brain Sci. 2020. V. 10. P. 628. https://doi.org/10.3390/brainsci10090628
- Grintzalis K., Zisimopoulos D., Grune T., Weber D., Georgiou C.D. // Free Rad. Biol. Med. 2013. V. 59. P. 27–35.
- Durfinova M., Brechtlova, M., Liska B., Baroskova Z. // Chem. Pap. 2007. V. 61. № 4. P. 321–325.
- Verde V., Fogliano V., Ritieni A., Maiani G., Morisco F., Caporaso N. // Free Radical Research. 2002. V. 36. № 8. P. 869–873.
- Сирота Т.В. // Биомед. химия. 2013. Т. 59. Вып. 4. С. 399–410.
- Levine R.L. Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. // Methods Enzymol. 1990. V. 186. P. 464–478.
- Stocks J., Gutteridge J.M., Sharp R.J., Dormandy T.L. // Clinical Science and Molecular Medicine. 1974. V. 47. № 3. P. 215–222.
- Ещенко Н.Д., Вольский Г.Г. // Методы биохимических исследований (липидный и энергетический обмен). Л.: Изд-во ЛГУ. 1982. С. 207–212.
- Биссвангер Х. Практическая энзимология М.:Бином. 2013. С. 132.
- Quirós P.M. // Meth. Mol. Biol. 2018. V. 1731. Human Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_5
- Ninfali P., Aluigi G., Pompella A. // Brain Research Protocols. 1997. V. 1. № 4. P. 357–363.
- Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. // Biochem. Pharmacol. 1961. V. 7. № 2. P. 91–95.
- Камышников В.С. Справочник по клинико-биологической лабораторной диагностике 2002. Т. 2. 2-е издание. 463 с.
- Королюк М.А., Иванова Л.И., Майорова И.Г., Токарев В.Е. // Лаб. дело. 1988. № 1. С. 16–19.
- Patsoukis N., Georgiou C.D. // Anal. Bioanal. Chem. 2004. V. 378. № 7. P. 1783–1792.
- Anderson M. // Methods Enzymol. 1985. V. 113. P. 548–555.
- Rahman I., Kode A., Rahman I., Biswas S.K. // Nat. Protoc. 2006. V. 1. № 6. P. 3159–3165.
- Menon D.A., Board P.G. // Anal. Biochem. 2013. V. 433. P. 132–136.
- Habig W.H., Pabst M.J., Jakoby W.B. // J. Biol. Chem. 1974. V. 249. № 22. P. 7130-7139.
- Smith I.K., Vierheller T.L., Thorne C.A. // Anal. Biochem. 1988. V. 175. P. 408–413.
- Flohé L., Günzler W.A. // Methods Enzymol. 1984. V. 105. P. 114–121.
- Volohonsky G., Tuby C.N., Porat N., Wellman-Rousseau M., Visvikis M.A., Leroy P., Rashi S., Steinberg S., Stark A.-A. // Chem. Biol. Interact. 2002. V. 140. № 1. P. 49–65.
- Oppenheimer L. // J. Biol. Chem. 1979. V. 254. № 12. P. 5184–5190.
- Гуринович В.А., Дорофей Д.С. // Эксперим. и клинич. фармакол. Матер. межд. науч.-практич. конф., Гродно, ГрГМУ. 2011. С. 49–53.
- Patsoukis N.,·Georgiou C.D. // Anal. Bioanal. Chem. 2004. V. 378. P. 1783-1792.
- Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254.
- Verstraeten S.V., Aimo L., Oteiza P.I. // Arch. Toxicol. 2008. V. 82(11). P. 789–802.
- Shi Qingli, Xu Hui, Kleinman W.A., Gibson G.E. // Biochimica et Biophysica Acta. 2008. V. 1782. P. 229–238.
- Mastrogiacomo F., Bergeron C., Kish S.J. // J. Neurochem.1993. V. 61. P. 2007–2014.
- Bubber P., Haroutunian V. // Ann. Neurol. 2005. V. 57. P. 695–703.
- Мойсеёнок А.Г. Пантотеновая кислота (биохимия и применение витамина). Минск. 1980. С. 33–48.
- Gout I. // Biochem. Soc. Trans. 2018. V. 46. № 3. P. 721–728.
- Dobrzyn P. // Int. J. Mol. Sci. 2022. V. 23. № 8. P. 4371. doi.org/https://doi.org/10.3390/ijms23084371
- Todorovic S.M., Jevtovic- Todorovic V. // Antioxid. Redox Signal. 2016 V. 21. № 6. P. 880–891.
- Семенович Д.С, Канунникова Н.П., Мойсеёнок А.Г. // Докл. НАН Беларуси. 2020. Т. 64. № 1. С. 78–85.
- Subramanian C., Yao J., Frank M.W., Rock C.O., Jackowski S. // Biochim. Biophys. Acta Mol. Basis Dis. 2020. V. 1866. № 5. P. 165663. https://doi.org/10.1016/j.bbadis.2020.165663
- Czumaj A., Szrock-Jurga S., Hebanowska A., Turyn J., Swierczynski J., Sledzinski T., Stelmanska E. // Int. J. Mol. Sci. 2020. V. 21. P. 9057. https://doi.org/10.3390/ijms21239057
- Мойсеёнок А.Г., Гуринович В.А., Катковская И.Н., Лукиенко Е.П., Максимчик Ю.З. // Кислород и свободные радикалы: сб. матер. науч.-практ. конф. с междун. участ. Гродно. ГрГМУ. 2022. С. 116–118. https://drive.google.com/drive/folders/1YdEwdKDKuY_5K2gMxfDarDuu_xDvOfcp?usp=sharing)
- Lashley T., Tossounian M.-A., Heaven N.C., Wallworth S., Peak-Chew S., Bradshaw A., Cooper J.M., Silva R., Srai S.K., Malanchuk O., Filonenko V., Koopman M.B., Rüdiger S.G.D., Skehel M., Gout I. // Front. Cell Neurosci. 2021. V. 15. P. 739425. https://doi.org/10.3389/fncel.2021.739425
- Мойсеёнок А.Г., Катковская И.Н. // Сборник статей междунар. науч.-практ. конф, посвящ. 50-летию Института биохимии биологически активных соединений НАНБ, Гродно. 2021. С. 305–314.
- O’Neill L.M., Guo C.A., Ding F., Phang Y.X., Liu Z., Shamsuzzama S., Ntambi J.M. // Int. J. Mol. Sci. 2020. V. 21. P. 8619. https://doi.org/10.3390/ijms23084371
- Iskusnykh I.Y., Zakharova A.A., Pathak D. Glutathione in Brain disorders and aging. Molecules. 2022. V. 27. P. 324.
- Онуфриев М.В., Степаничев М.Ю., Лазарева Н.А., Катковская И.Н., Тишкина А.О., Мойсеёнок А.Г., Гуляева Н.В. // Нейрохимия. 2010. Т. 27. № 2. С. 170–175.
Supplementary files
