Phenibut, Semax and GIZh-290 Modulate Cortical mGluII Receptors in an Attention Deficit Model in Mice
- Authors: Sukhorukova N.A.1, Vasileva E.V.1, Kovalev G.I.1
-
Affiliations:
- Zakusov Research Institute of Pharmacology, Russian Academy of Sciences
- Issue: Vol 40, No 2 (2023)
- Pages: 172-178
- Section: Experimental Articles
- URL: https://vietnamjournal.ru/1027-8133/article/view/653948
- DOI: https://doi.org/10.31857/S1027813323020139
- EDN: https://elibrary.ru/UDALLN
- ID: 653948
Cite item
Abstract
In our previous experiments, it was found that the nootropic drugs piracetam (200 mg/kg/day, intraperitoneally), pantogam (100), pantogam active (200), phenibut (70), semax (0.6), as well as a new derivative of racetam GIZh-290 (3) and the comparison drug atomoxetine (3.0) as a result of subchronic administration, attention stability to new objects is restored in the “closed enriched cross maze” test, showing selectivity of the effect in relation to a subpopulation of CD-1 mice with an initially low attention index (ED-Low). In this study, the effect of nootropics on metabotropic glutamate receptors (mGluRII) in the prefrontal cortex of these mice was studied using the receptor binding of a specific radioligand [G-3H]LY354740. It was found that the density (Bmax) of mGluII receptors in the brains of subpopulation with the ED-Low phenotype was 11–25% lower than in subpopulation with the ED-High phenotype. None of the drugs had an effect on these receptors in the subpopulation with the ED-High phenotype, whereas phenibut, semax and GIZh-290 showed efficacy with respect to the ED-Low phenotype, increasing Bmax values by 60, 19 and 22%, respectively. Thus, it was shown for the first time that mGluRII are involved in the pathogenesis of attention impairment, and the ability of phenibut, semax and GIZh-290 (2,6-dimethylanilide (2-oxo-4-phenylpyrrolidine-1-yl) acetate to selectively normalize the reduced density of these receptors indicates the prospects of their use in as a drugs for the treatment of attention deficit disorder.
About the authors
N. A. Sukhorukova
Zakusov Research Institute of Pharmacology, Russian Academy of Sciences
Email: nchjournal@gmail.com
Russia, Moscow
E. V. Vasileva
Zakusov Research Institute of Pharmacology, Russian Academy of Sciences
Email: nchjournal@gmail.com
Russia, Moscow
G. I. Kovalev
Zakusov Research Institute of Pharmacology, Russian Academy of Sciences
Email: nchjournal@gmail.com
Russia, Moscow
References
- Michele di F., Prichep L., John E. R., Chabot R. J. // International Journal of Psychophysiology. 2005. № 58. P. 81–93.
- Arnsten A.F.T. // CNS Drugs. 2009. № 23. Suppl. 1. P. 33–41.
- Bush G. // Neuropsychopharmacology Reviews. 2010. № 35. P. 278–300.
- Arnsten A.F.T., Pliszka S.R. // Pharmacol. Biochem. Behav. 2011. V. 99. № 2. P. 211–216.
- Faraone S.V. // Neuroscience & Biobehavioral Reviews. 2018. № 87. P. 255–270.
- Van der Kooij M.A., Glennon J.C. // Neuroscience and Biobehavioral Reviews, 2007. № 31. P. 597–618.
- Leo D., Gainetdinov R.R. // Cell Tissue Res. 2013. № 354. P. 259–271.
- Asherson P., Gurling H. // Behavioral neuroscience of attention deficit hyperactivity disorder and its treatment / Eds Stanford C., Tannock R. Springer-Berlin, Heidelberg. 2012. P. 238-273.
- Ковалёв Г.И., Сухорукова Н.А., Васильева Е.В., Кондрахин Е.А., Салимов Р.М. // Биомедицинская химия. 2021. Т. 67. № 5. С. 402–410.
- Ковалёв Г.И., Сухорукова Н.А., Васильева Е.В., Кондрахин Е.А, Салимов Р.М. // Экспериментальная и клиническая фармакология. 2021. Т. 84. № 4. С. 3–11.
- Ковалёв Г.И., Сухорукова Н.А., Кондрахин Е.А., Васильева Е.В., Салимов Р.М. // Химико-фармацевтический журнал. 2021. Т. 55. № 8. С. 10–14.
- Ковалёв Г.И., Сухорукова Н.А., Кондрахин Е.А., Васильева Е.В., Салимов Р.М. // Экспериментальная и клиническая фармакология. 2021 Т. 84. № 6. С. 3–10.
- Ковалев Г.И., Салимов Р.М., Сухорукова Н.А., Кондрахин Е.А., Васильева Е.В. // Нейрохимия. 2020. Т. 37. № 1. С. 1–9.
- Moretto E., Murru L., Martano G., Sassone J., Passafaro M. // Progress in Neuropsychopharmacology and Biological Psychiatry. 2018. № 84. P. 328–342.
- Mukherjee S., Manahan-Vaughan D. // Neuropharmacology. 2013. № 66. P. 65–81.
- Elia J., Glessner J., Wang K., Shtir C. // Nat. Genet. 2012. № 44. P. 78–84.
- Chaki S., Ago Y., Palucha-Paniewiera A., Matrisciano F., Pilc A. // Neuropharmacology. 2013. № 66. P. 40–52.
- Marek G.J. // European Journal of Pharmacology. 2010. V. 639. P. 81–90.
- Pozzi L., Baviera M, Sacchetti G., Calcagno E., Balducci C., Invernizzi R.W., Carli M. // Neuroscience. 2011. V. 176. P. 336–348.
- Glowinski J., Iversen L.L. // J Neurochem. 1966. V. 13. № 8. P. 655–669.
- Schaffhauser H., Richards J.G., Cartmell J., Chaboz S., Kemp J.A. // Mol. Pharmacol. 1998. V. 53. № 2. P. 228–233.
- Waterborg J.H., Matthews H.R. // Methods Mol. Biol. 1984. V. 1. P. 1–3.
- Сухорукова Н.А., Васильева Е.В., Кондрахин Е.А., Салимов Р.М., Ковалёв Г.И. // Фармакокинетика и фармакодинамика. 2022. № 2. С. 23–31.
- Kniazeff J., Prezeau L., Rondard P., Pin J., Bettler B. // Pharmacol. Ther. 2011. V. 130. № 1. P. 9–25.
Supplementary files
