Effect of Low Molecular Weight Nerve Growth Factor Mimetic GK-2 on Cognitive Function and Synaptic Transmission in Hippocampal Slices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nerve growth factor (NGF) contributes to the proliferation, differentiation and maintenance of the viability and functioning of peripheral and central neurons. At the Research Zakusov Institute of Pharmacology a dimeric dipeptide mimetic of the NGF loop 4 bis(monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide (GK-2) was created. GK-2 activates PI3K/AKT and PLC-γ1 signaling cascades, without affecting MAPK/ERK, and appears to have procognitive properties. In the present study, we investigated the mnemotropic effects of GK-2 with a single intraperitoneal dose of 0.1, 0.5 and 5.0 mg/kg in the novel object recognition test in rats. GK-2 at a dose of 0.5 mg/kg statistically significantly improved the long-term memory of animals. In experiments on the rat hippocampal acute slices, we evaluated the effects of GK-2 on synaptic transmission and its plastic properties in the synaptic system Schaffer collaterals − CA1 pyramidal cell.

Sobre autores

A. Volkova

Research Zakusov Institute of Pharmacology; Lomonosov Moscow State University, Faculty of Biology

Email: nchjournal@gmail.com
Russia, Moscow; Russia, Moscow

P. Povarnina

Research Zakusov Institute of Pharmacology

Email: nchjournal@gmail.com
Russia, Moscow

P. Rogozin

Research Center of Neurology

Email: nchjournal@gmail.com
Russia, Moscow

R. Kondratenko

Research Center of Neurology

Email: nchjournal@gmail.com
Russia, Moscow

I. Sharonova

Research Center of Neurology

Email: nchjournal@gmail.com
Russia, Moscow

A. Kamensky

Lomonosov Moscow State University, Faculty of Biology

Email: nchjournal@gmail.com
Russia, Moscow

V. Skrebitsky

Research Center of Neurology

Email: nchjournal@gmail.com
Russia, Moscow

Bibliografia

  1. Skaper S.D. // Methods Mol. Biol. 2012. V. 846. P. 1–12.
  2. Aloe L., Rocco M.L., Bianchi P., Manni L. // J. Transl. Med. 2012. V. 10. № 1. P. 239.
  3. Ivanov A.D., Tukhbatova G.R., Salozhin S.V., Markevich V.A. // Neuroscience. 2015. V. 289. P. 114–122.
  4. Dobryakova Y.V., Spivak Y.S., Zaichenko M.I., Koryagina A.A., Markevich V.A., Stepanichev M.Y., Bolshakov A.P. // Front. Neurosci. 2021. V. 15.
  5. Xu C.-J., Wang J.-L., Jin W.-L. // Neurochem. Res. 2016. V. 41. № 6. P. 1211–1218.
  6. Manni L., Conti G., Chiaretti A., Soligo M. // Front. Pharmacol. 2021. V. 12.
  7. Allen S.J., Watson J.J., Shoemark D.K., Barua N.U., Patel N.K. // Pharmacol. Ther. 2013. V. 138. № 2. P. 155–175.
  8. Xie Y., Tisi M.A., Yeo T.T., Longo F.M. // J. Biol. Chem. 2000. V. 275. № 38. P. 29868–29874.
  9. Scarpi D., Cirelli D., Matrone C., Castronovo G., Rosini P., Occhiato E.G., Romano F., Bartali L., Clemente A.M., Bottegoni G., Cavalli A., De Chiara G., Bonini P., Calissano P., Palamara A.T., Garaci E., Torcia M.G., Guarna A., Cozzolino F. // Cell Death Dis. 2012. V. 3. № 7. P. e339–e339.
  10. Jain P., Li R., Lama T., Saragovi H.U., Cumberlidge G., Meerovitch K. // Exp. Eye Res. 2011. V. 93. № 4. P. 503–512.
  11. Гудашева Т.А., Антипова Т.А., Середенин С.Б. // Доклады Академии наук. 2010. Т. 434. № 4. С. 549–552.
  12. Gudasheva T.A., Povarnina P.Y., Antipova T.A., Firsova Y.N., Konstantinopolsky M.A., Seredenin S.B. // J. Biomed. Sci. 2015. V. 22. № 1. P. 106.
  13. Gudasheva T.A., Logvinov I.O., Nikolaev S.V., Antipova T.A., Povarnina P.Y., Seredenin S.B. // Dokl. Biochem. Biophys. 2020. V. 494. № 1. P. 244–247.
  14. Антипова Т.А., Николаев С.В., Гудашева Т.А. // Экспериментальная и клиническая фармакология. 2014. Т. 77. № 2. С. 8–11.
  15. Povarnina P.Y., Vorontsova O.N., Gudasheva T.A., Ostrovskaya R.U., Seredenin S.B. // Acta Naturae. 2013. V. 5. № 3. P. 84–91.
  16. Волкова А.А., Поварнина П.Ю., Гудашева Т.А., Середенин С.Б. // Химико-фармацевтический журнал. 2022. Т. 56. № 4. С. 3–6.
  17. Collingridge G.L., Isaac J.T.R., Wang Y.T. // Nat. Rev. Neurosci. 2004. V. 5. № 12. P. 952–962.
  18. Milner B., Squire L.R., Kandel E.R. // Neuron. 1998. V. 20. № 3. P. 445–468.
  19. Середенин С.Б., Гудашева Т.А. // Журнал неврологии и психиатрии им. С.С. Корсакова. 2015. № 6. С. 63–70.
  20. Gudasheva T.A., Povarnina P., Logvinov I.O., Antipova T.A., Seredenin S.B. // Drug Des. Devel. Ther. 2016. V. 10. P. 3545–3553.
  21. Ennaceur A., Delacour J. // Behav. Brain Res. 1988. V. 31. № 1. P. 47–59.
  22. Antunes M., Biala G. // Cogn. Process. 2011. V. 13. № 2. P. 93–110.
  23. Beldjoud H., Barsegyan A., Roozendaal B. // Front. Behav. Neurosci. 2015. V. 9. P. 108.
  24. Puzzo D., Privitera L., Palmeri A. // Neurobiol. Aging. 2012. V. 33. № 7. P. 1484.e15–1484.e24.
  25. Calabrese E. // Int. J. Mol. Sci. 2018. V. 19. № 10. P. 2871.
  26. Calabrese E.J. // Br. J. Clin. Pharmacol. 2008. V. 66. № 5. P. 594–617.
  27. Поварнина П.Ю., Гудашева Т.А., Воронцова О.Н., Бондаренко Н.А., Середенин С.Б. // Бюллетень экспериментальной биологии и медицины. 2011. Т. 151. № 6. С. 634–637.
  28. Иванов С.В., Островская Р.У., Гудашева Т.А., Середенин С.Б. // Химико-фармацевтический журнал. 2021. Т. 55. № 4. С. 11–15.
  29. Kemp S.W.P., Webb A.A., Dhaliwal S., Syed S., Walsh S.K., Midha R. // Exp. Neurol. 2011. V. 229. № 2. P. 460–470.
  30. Wang X., Bauer J.H., Li Y., Shao Z., Zetoune F.S., Cattaneo E., Vincenz C. // J. Biol. Chem. 2001. V. 276. № 36. P. 33812–33820.
  31. Stelmashook E.V., Aleksandrova O.P., Rogozin P.D., Genrikhs E.E., Novikova S.V., Gudasheva T.A., Sharo-nova I.N., Skrebitsky V.G., Isaev N.K. // Bull. Exp. Biol. Med. 2020. V. 168. № 4. P. 474–478.
  32. Regehr W.G. // Cold Spring Harb. Perspect. Biol. 2012. V. 4. № 7. P. a005702–a005702.
  33. Kang H., Schuman E. // J. Physiol. 1995. V. 89. № 1. P. 11–22.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (17KB)
3.

Baixar (26KB)
4.

Baixar (90KB)
5.

Baixar (29KB)

Declaração de direitos autorais © А.А. Волкова, П.Ю. Поварнина, П.Д. Рогозин, Р.В. Кондратенко, И.Н. Шаронова, А.А. Каменский, В.Г. Скребицкий, 2023