The Effect of Prenatal Stress on the Level of NO-Metabolites in the Central Nervous System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nitric oxide performs a number of essential functions in the central nervous system. This neurotransmitter regulates apoptotic processes, differentiation and proliferation of neurons, synaptic activity, plasticity. Prenatal stress may be a factor affecting the NO level in different parts of the central nervous system (CNS). The aim of the work was to study the level of NO metabolites in phylogenetically different parts of the central nervous system in prenatally stressed mature male and female rats, depending on the stage of the estrous cycle. Pregnant female rats (n = 12) were subjected to stress from the 16th to the 19th days of pregnancy for 3 hours in the morning. The NO level was assessed in adult (4-month-old) offspring of both sexes. In males, there was a decrease in the level of NO metabolites in the cerebellum and hypothalamus and an increase in the spinal cord. The level of NO metabolites within the studied parts of the CNS of females in the control was higher, after undergoing prenatal stress it changed less compared to males: significant changes were noted in the spinal cord regardless of the estrus cycle stage and in the cerebellum at the stage of estrus. Thus, regardless of gender, the phylogenetically younger structure, the cerebral cortex, turned out to be the most resistant to prenatal stress; the most pronounced changes were noted in the phylogenetically ancient part of the CNS, the spinal cord. Given the importance of NO in the CNS as a key signaling molecule, any changes in its level under the influence of prenatal stress can both have a significant adaptive value and have negative consequences for the functional state of the tissue.

Texto integral

Acesso é fechado

Sobre autores

O. Kuleshova

Astrakhan State University

Autor responsável pela correspondência
Email: pozdniakova_olga@list.ru
Rússia, Astrakhan

D. Teply

Astrakhan State University

Email: pozdniakova_olga@list.ru
Rússia, Astrakhan

E. Bazhanova

The Federal State-Financed Institution Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: pozdniakova_olga@list.ru
Rússia, St. Petersburg; St. Petersburg

Bibliografia

  1. Silberman D.M., Acosta G.B., Zorrilla Zubilete M.A. // Pharmacol Res. 2016. № 109. Р. 64–73.
  2. Саульская Н.Б., Бурмакина М.А., Трофимова Н.А. // Нейрохимия. 2021. Т. 38. № 3. С. 249–256.
  3. Левченкова О.С., Новиков В.Е. // Российский медико-биологический вестник им. академика И.П. Павлова. 2014. № 2. С. 134–144.
  4. Пожилова Е.В., Новиков В.Е., Левченкова О.С. // Обзоры по клинической фармакологии и лекарственной терапии. 2014. Т. 12. № 3. С. 13–19.
  5. Tomomi G. // Arteriosclerosis, Thrombosis and Vascular Biology. 2006. № 26. Р. 1439.
  6. Tripathi M.K., Kartawy M., Amal H. // Redox Biol. 2020. V. 34.
  7. Fu Y., Liu Н., He L., Ма S. // Behavioural Brain Research. 2022. V. 433.
  8. Gulati K., Rai N., Ray A. // Vitam Horm. 2017. V. 103. P. 169–192.
  9. Башкатова В.Г., Богданова Н.Г., Алексеева Е.В., Назарова Г.А., Судаков С.К. // Научно-медицинский вестник центрального Черноземья. 2018. № 71. С. 93–96.
  10. Block C.L., Eroglu O., Mague S.D., Smith C.J. // Cell reports. 2022. V. 40. № 5.
  11. Mohammadi M., Rohani A.H., Yaghmaei P., Sahraei H. // Basic Clin Neurosci. 2022. V. 13(3). P. 275–283.
  12. Maxwell S.D., Fineberg A.M., Drabick D.A., Murphy S.K., Ellman L.M. // Journal of Abnormal Child Psychology. 2018. V. 46. P. 381–397.
  13. Moura C.A., Oliveira M.C., Costa L.F. // Acta Neuropsychiatrica. 2020. V. 32. № 3. P. 122–127.
  14. Павлюкевич А.Н., Беляева Л.Е. // Вестник ВГМУ. 2020. Т. 19. № 2. С. 35–43.
  15. Владимирская Т.Э., Швед И.А., Криворот С.Г., Веялкина Н.Н., Адамович А.В. // Вестник национальной академии наук Белоруссии. Серия Биологических наук. 2011. № 4. С. 88–91.
  16. Мажитова М.В. // Современные проблемы науки и образования. 2011. № 3. С. 2.
  17. Гублер Е.В., Генкин А.А. Применение непараметрических критериев статистики в медико-биологических исследованиях. Л.: Медицина, 1973. с. 144.
  18. Lee D.Y., Chiu, J.J. // J. Biomed. Sci. 2019. V. 26. № 1. P. 56.
  19. Zhu P., Wang W., Zuo R., Sun K. // Cell Mol. Life Sci. 2019. V. 76. P. 13–26.
  20. Chen Y., He Z., Chen G., Liu M., Wang H. // Toxicology. 2019. V. 428.
  21. Collado-Alsina A., Ramirez-Franco J., Sanchez-Prieto J., Torres M. // J. Neurosci. 2014. V. 34. P. 8788–8799.
  22. Mahmoudi R., Enant E., Delaviz H., Rad P., Roozbehi A., Barmak M.J., Azizi A. // Basic Clin Neurosci. 2016. V. 7(1). P. 5–11.
  23. Галкина О.В. // Нейрохимия. 2013. Т. 30. № 2. С. 93–102.
  24. Вьюшина А.В., Притворова А.В., Семенова О.Г., Ордян Н.Э. // Нейрохимия. 2020. T. 37. № 2. C. 148–152.
  25. Reis M.E.M.D., de Araújo L.T.F., de Andrade W.M.G., Resende N. da S., de Lima R.R.M., do Nascimento Jr. E.S., de O. Costa M.S.M., Cavalcante J.C. // Brain Res. 2018. V. 1685. № 15. P. 60–78.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The level of NO-metabolites in the brain of prenatally stressed male rats, nmol/ml. Note: statistically significant differences between the compared groups are p < 0.05 – *, p < 0.01 – **, Mann-Whitney U–test.

Baixar (165KB)
3. Fig. 2. The level of NO-metabolites in the brain of prenatally stressed female rats, nmol/ml. Note: statistically significant differences between the compared groups are p < 0.05 – *, p < 0.01 – **, U-Mann – Whitney criterion; PS – prenatal stress; E – estrus; DE – diestrus.

Baixar (203KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024