Comparison of methods for isolation of extracellular vesicles from human serum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Extracellular vesicles (EVs) have recently become an important object of study. It is assumed that through EVs in the body, intercellular communication is carried out, including the regulation of gene expression, the control of proliferation and differentiation, and much more. The important role of EV in pathology is also shown. An important practical application of EVs is their use as markers of various pathological conditions. At present, the understanding of the molecular mechanisms of action of EVs is very limited, not least due to the methodological difficulties of studying these objects. First of all, it should be noted that there is no standardized method for isolating EVs, and this is a problem for a deeper study of EVs. We tried to choose the most appropriate method for isolating EVs from blood serum. For this, EVs were isolated from blood serum using three methods, after which the protein composition of the isolated EVs was determined using mass spectrometry. Each of the methods used has its own advantages and disadvantages, which must be taken into account when planning experiments in the future.

Full Text

Restricted Access

About the authors

А. А. Yakovlev

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Author for correspondence.
Email: al_yakovlev@ihna.ru
Russian Federation, Moscow; Moscow

T. A. Druzhkova

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM

Email: al_yakovlev@ihna.ru
Russian Federation, Moscow

N. А. Solovyeva

Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences

Email: al_yakovlev@ihna.ru
Russian Federation, Moscow

A. В. Guekht

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM

Email: al_yakovlev@ihna.ru
Russian Federation, Moscow

N. V. Gulyaeva

Scientific and Practical Psychoneurological Center named after Z.P. Solovyov DZM; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Email: al_yakovlev@ihna.ru
Russian Federation, Moscow; Moscow

References

  1. Thery C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. // J. Extracell. Vesicles. 2018. V. 7. № 1.
  2. Belhadj Z., He B., Deng H.L., Song S.Y., Zhang H., Wang X.Q., Dai W.B., Zhang Q. // J. Extracell. Vesicles. 2020. V. 9. № 1.
  3. Khaspekov L.G., Yakovlev A.A. // Neurochem. J. 2023. V. 39. № 1. P. 1‒18.
  4. van Niel G., Carter D.R.F., Clayton A., Lambert D.W., Raposo G., Vader P. // Nat. Rev. Mol. Cell. Biol. 2022. V. 23. № 5. P. 369‒382.
  5. Brennan K., Martin K., FitzGerald S.P., O’Sullivan J., Wu Y., Blanco A., Richardson C., Mc Gee M.M. // Sci. Rep. 2020. V. 10. № 1.
  6. Dong L., Zieren R.C., Horie K., Kim C.-J., Mallick E., Jing Y., Feng M., Kuczler M.D., Green J., Amend S.R., Pienta K.J., Xue W. // J. Extracell. Vesicles. 2020. V. 10. № 2.
  7. Visan K.S., Lobb R.J., Ham S., Lima L.G., Palma C., Edna C.P.Z., Wu L.-Y., Gowda H., Datta K.K., Hartel G., Salomon C., Möller A. // J. Extracell. Vesicles. 2022. V. 11. № 9.
  8. Novikova S., Shushkova N., Farafonova T., Tikhonova O., Kamyshinsky R., Zgoda V. // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 1‒29.
  9. Tyanova S., Temu T., Cox J. // Nat. Protoc. 2016. V. 11. № 12. P. 2301‒2319.
  10. Yakovlev A.A., Druzhkova T.A., Nikolaev R.V., Kuznetsova V.E., Gruzdev S.K., Guekht A.B., Gulyaeva N.V. // Neurochem. J. 2019. V. 13. № 4. P. 385‒390.
  11. Yerneni S.S., Solomon T., Smith J., Campbell P.G. // Biochim. Biophys. Acta Gen. Subj. 2022. V. 1866. № 2.
  12. Tóth E., Turiák L., Visnovitz T., Cserép C., Mázló A., Sódar B.W., Försönits A.I., Petővári G., Sebestyén A., Komlósi Z., Drahos L., Kittel Á., Nagy G., Bácsi A., Dénes Á., Gho Y.S., Szabó-Taylor K., Buzás E.I. // J. Extracell. Vesicles. 2021. V. 10. № 11.
  13. Wolf M., Poupardin R.W., Ebner-Peking P., Andrade A.C., Blöchl C., Obermayer A., Gomes F.G., Vari B., Maeding N., Eminger E., Binder H.M., Raninger A.M., Hochmann S., Brachtl G., Spittler A., Heuser T., Ofir R., Huber C.G., Aberman Z., Schallmoser K., Volk H.D., Strunk D. // J. Extracell. Vesicles. 2022. V. 11. № 4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Анализ протеома ЭВ, выделенных разными методами. Число белков, идентифицированных с помощью масс-спектрометрического анализа, представлено на диаграмме Венна.

Download (63KB)
3. Рис. 2. Локализация белков, выявленных во фракции ЭВ, согласно базе данных FunRich. Показаны только те компартменты, белки которых достоверно обогащаются при выделении ЭВ. Во всех представленных компартментах для всех способов выделения происходит достоверное обогащение белков с достоверностью p < 0.001 по тесту Хи-квадрат с поправкой Бонферрони на множественные сравнения.

Download (136KB)

Copyright (c) 2024 Russian Academy of Sciences