A simple method for morphological assessment of astrocytes: sexual dimorphism in the maturation dynamics of astrocytes in the rat amygdala

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Simple, affordable and reliable methods for assessing the status of brain structures maturation are vital for preclinical studies related to the effects of early-life stress. These methods make it possible to evaluate the effectiveness of specific therapies or the prevention of stress-related pathological changes. The morphology of astrocytes is one of the markers representing functional state of synapses and thus it is indicative of maturation state of neuronal networks. We performed the method for evaluating the morphological characteristics of astrocytes using epifluorescence microscopy and the ImageJ program. Application of the method to brain sections of rats on postnatal days 18 and 30 revealed the dynamics of morphological changes in the astrocytes of the basolateral nucleus of the amygdala during normal ontogenesis. The proposed method makes it possible to evaluate not only the density of the cell population, but also their morphological parameters associated with the degree of branching and the length of the astrocyte processes. The approach used revealed sexual dimorphism in the ontogenesis: the length of the astrocytic processes increased during maturation from juvenile to pubertal period in the basolateral nucleus of the amygdala only in female rats, but not in males.

Full Text

Restricted Access

About the authors

А. O. Manolova

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Author for correspondence.
Email: anna.manolova@ihna.ru
Russian Federation, Moscow

N. A. Lazareva

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
Russian Federation, Moscow

A. E. Paramonova

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
Russian Federation, Moscow

A. А. Kvichansky

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
Russian Federation, Moscow

М. S. Odrinskaya

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
Russian Federation, Moscow

M. Yu. Stepanichev

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
Russian Federation, Moscow

N. V. Gulyaeva

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
Russian Federation, Moscow

References

  1. Dennison M., Whittle S., Yücel M., Vijayakumar N., Kline A., Simmons J., Allen N.B. // Dev. Sci. 2013. V. 16. P. 772–791. doi: 10.1111/desc.12057.
  2. Fish A.M., Nadig A., Seidlitz J., Reardon P.K., Mankiw C., McDermott C.L., Blumenthal J.D., Clasen L.S., Lalonde F., Lerch J.P., Chakravarty M.M., Shinohara R.T., Raznahan A. // NeuroImage. 2020. V. 204. P. 116122. doi: 10.1016/j.neuroimage.2019.116122.
  3. Verwer R.W.H., Van Vulpen E.H.S., Van Uum J.F.M. // J. Comp. Neurol. 1996, 376, 75–96. doi: 10.1002/(SICI)1096-9861(19961202)376:1<75::AID-CNE5>3.0.CO,2-L.
  4. Arruda-Carvalho M., Wu W.-C., Cummings K.A., Clem R.L. // J. Neurosci. 2017. V. 37. P. 2976–2985. doi: 10.1523/JNEUROSCI.3097-16.2017.
  5. Wierenga L.M., Bos M.G.N., Schreuders E., Vd Kamp F., Peper J.S., Tamnes C.K., Crone E.A. // Psychoneuroendocrinology. 2018. V. 91. P. 105–114. doi: 10.1016/j.psyneuen.2018.02.034.
  6. Frere P.B., Vetter N.C., Artiges E., Filippi I., Miranda R., Vulser H., Paillère-Martinot M.-L., Ziesch V., Conrod P., Cattrell A., Walter H., Gallinat J., Bromberg U., Jurk S., Menningen E., Frouin V., Papadopoulos Orfanos D., Stringaris A., Penttilä J., Van Noort B., Grimmer Y., Schumann G., Smolka M.N., Martinot J.-L., Lemaître H. // NeuroImage. 2020. V. 210. P. 116441. doi: 10.1016/j.neuroimage.2019.116441.
  7. Simerly R.B., Swanson L.W., Chang C., Muramatsu M. // J. Comp. Neurol. 1990. V. 294. P. 76–95. doi: 10.1002/cne.902940107.
  8. Cahill L., Uncapher M., Kilpatrick L., Alkire M.T., Turner J. // Learn. Mem. 2004. V. 11. P. 261–266. doi: 10.1101/lm.70504.
  9. Cooke B.M., Stokas M.R., Woolley C.S. // J. Comp. Neurol. 2007. V. 501. P. 904–915. doi: 10.1002/cne.21281.
  10. Kilpatrick L.A., Zald D.H., Pardo J.V., Cahill L.F. // NeuroImage. 2006. V. 30. P. 452–461. doi: 10.1016/j.neuroimage.2005.09.065.
  11. Clarke L.E., Barres B.A. // Nat. Rev. Neurosci. 2013. V. 14. P. 311–321. doi: 10.1038/nrn3484.
  12. Nägler K., Mauch D.H., Pfrieger F.W. // J. Physiol. 2001. V. 533. P. 665–679. doi: 10.1111/j.1469-7793.2001.00665.x.
  13. Pfrieger F.W., Barres B.A. // Science. 1997. V. 277. P. 1684–1687. doi: 10.1126/science.277.5332.1684.
  14. Johnson R.T., Breedlove S.M., Jordan C.L. // Astrocytes in the Amygdala / In Vitamins & Hormones. Elsevier, 2010. Vol. 82. P 23–45. doi: 10.1016/S0083-6729(10.82002-3.
  15. Mong J.A., Kurzweil R.L., Davis A.M., Rocca M.S., McCarthy M.M. // Horm. Behav. 1996. V. 30. P. 553–562. doi: 10.1006/hbeh.1996.0058.
  16. Milner T.A., McEwen B.S., Hayashi S., Li C.J., Reagan L.P., Alves S.E. // J. Comp. Neurol. 2001. V. 429. P. 355–371.
  17. Johnson R.T., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2013. V. 521. P. 2298–2309. doi: 10.1002/cne.23286.
  18. Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.-B., Represa A. // Front. Neuroanat. 2015. V. 9. doi: 10.3389/fnana.2015.00161.
  19. Paxinos G., Watson C. // The Rat Brain in Stereotaxic Coordinates, 3. ed. / Academic Press: San Diego, Calif., 1997.
  20. Martinez F.G., Hermel E.E.S., Xavier L.L., Viola G.G., Riboldi J., Rasia-Filho A.A., Achaval M. // Brain Res. 2006. V. 1108. P. 117–126. doi: 10.1016/j.brainres.2006.06.014.
  21. Conejo N.M., González‐Pardo H., Cimadevilla J.M., Argüelles J.A., Díaz F., Vallejo‐Seco G., Arias J.L. // J. Neurosci. Res. 2005. V. 79. P. 488–494. doi: 10.1002/jnr.20372.
  22. Immenschuh J., Thalhammer S.B., Sundström-Poromaa I., Biegon A., Dumas S., Comasco E. // Biol. Sex Differ. 2023. V. 14. P. 54. doi: 10.1186/s13293-023-00541-8.
  23. Brenner M., Messing A. // ASN Neuro. 2021. V. 13. P. 175909142098120. doi: 10.1177/1759091420981206.
  24. Khan M.M., Hadman M., Wakade C., De Sevilla L.M., Dhandapani K.M., Mahesh V.B., Vadlamudi R.K., Brann D.W. // Endocrinology. 2005. V. 146. P. 5215–5227. doi: 10.1210/en.2005-0276.
  25. Elmariah S.B., Hughes E.G., Oh E.J., Balice-Gordon R.J. // Neuron Glia Biol. 2004. V. 1. P. 339–349. doi: 10.1017/S1740925X05000189.
  26. Bushong E.A., Martone M.E., Jones Y.Z., Ellisman M.H. // J. Neurosci. 2002. V. 22. P. 183–192. doi: 10.1523/JNEUROSCI.22-01-00183.2002.
  27. Reeves A.M.B., Shigetomi E., Khakh B.S. // J. Neurosci. 2011. V. 31. P. 9353–9358. doi: 10.1523/JNEUROSCI.0127-11.2011.
  28. Bondi H., Bortolotto V., Canonico P.L., Grilli M. // Neurobiol. Aging. 2021. V. 100. P. 59–71. doi: 10.1016/j.neurobiolaging.2020.12.018.
  29. Tavares G., Martins M., Correia J.S., Sardinha V.M., Guerra-Gomes S., Das Neves S.P., Marques F., Sousa N., Oliveira J.F. // Brain Struct. Funct. 2017. V. 222. P. 1989–1999. doi: 10.1007/s00429-016-1316-8.
  30. Baldwin K.T., Murai K.K., Khakh B.S. // Trends Cell Biol. 2023. S0962892423002040. doi: 10.1016/j.tcb.2023.09.006.
  31. Nedergaard M., Ransom B., Goldman S.A. // Trends Neurosci. 2003. V. 26. P. 523–530. doi: 10.1016/j.tins.2003.08.008.
  32. Krebs-Kraft D.L., Hill M.N., Hillard C.J., McCarthy M.M. // Proc. Natl. Acad. Sci. 2010. V. 107. P. 20535–20540. doi: 10.1073/pnas.1005003107.
  33. Mohr M.A., Michael N.S., DonCarlos L.L., Sisk C.L. // Dev. Cogn. Neurosci. 2022. V. 57. P. 101141. doi: 10.1016/j.dcn.2022.101141.
  34. Johnson R.T., Schneider A., DonCarlos L.L., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2012. V. 520. P. 2531–2544. doi: 10.1002/cne.23061.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stages of astrocyte image processing from micrograph to skeleton graph using the example of more (a–c) and less (d–e) branched cells. a, g – micrograph of astrocyte, b, d – binarized image, c, e – skeletonized image. Scale bar – 10 µm.

Download (160KB)
3. Fig. 2. Results of statistical processing of the obtained morphological characteristics. a – increase in the astrocyte population density in the basolateral nucleus of the amygdala with age: F(1, 26) = 5.46, p = 0.027, no gender effect. b – increase in the average length of the skeleton graph edge was found in females, but not in males: “gender” * “age” – (F(1, 22) = 4 .52, p = 0.045), males PD18 vs females PD18 – p = 0.040, females PD18 vs females PD30 ‒ (p = 0.011) (Tukey post hoc). The average value for the group is indicated by a horizontal bar.

Download (101KB)

Copyright (c) 2024 Russian Academy of Sciences