Glucocorticoid receptor expression in the different cell types of the neonatal rat hippocampus and cortex

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Glucocorticoids (GC) are crucial regulator of organism homeostasis and function. Despite severe outcome glucocorticoid therapy in neonates is widely used antenataly for accelerating fetal lung maturation in cases of preterm birth. GC action mediated via glucocorticoid receptors – ligand activated transcription factors. Despite broad range of information concerning GR expression in the brain, not so much known about GR expression in the neonatal brain in aspects of cell specificity and identity. In this work we perform comparative study of GR expression together with panel of main neuronal and astrocytic cell markers in the neonatal rat brain. We immunohistochemically studied GR expression in the hippocampal CA1 field and enthorinal cortex together with cortical projection neuron markers – SATB2, NURR1; Calretenin – interneurons marker, and GFAP – astrocytic marker. The highest calocalization coefficients observed for GR with Calrtetenin. With projection neuron markers that are also transcription factors calocalization coefficients increased to the same values as for GR-Calretenin 6h after dexamethasone injection and GR were translocated to the nucleus. Our analysis showed that in the neonatal rat brain GR are more localized in neurons than in astocytes.

Full Text

Restricted Access

About the authors

D. А. Lanshakov

The Institute of Cytology and Genetics SB RAS; Novosibirsk State University

Author for correspondence.
Email: lanshakov@bionet.nsc.ru

Postgenomics Neurobiology Sector

Russian Federation, Novosibirsk; Novosibirsk

U. S. Drozd

The Institute of Cytology and Genetics SB RAS; Novosibirsk State University

Email: lanshakov@bionet.nsc.ru

Postgenomics Neurobiology Sector

Russian Federation, Novosibirsk; Novosibirsk

N. N. Dygalo

Novosibirsk State University; The Institute of Cytology and Genetics SB RAS

Email: lanshakov@bionet.nsc.ru

Functional Neurogenomics Laboratory

Russian Federation, Novosibirsk; Novosibirsk

References

  1. Yudt M.R. and Cidlowski J.A. // Mol. Endocrin. 2002. V. 16. P. 1719–1726.
  2. Tronche F., Kellendonk C., Kretz O., Gass P., Anlag K., Orban P.C., Bock R., Klein R., and Schütz G. // Nat Genet. 1999. V. 23. P. 99–103.
  3. Kellendonk C., Tronche F., Reichardt H.M., and Schütz G. // J. Ster. Biochem. Mol. Biol. 1999. V. 69. P. 253–259.
  4. Kellendonk C., Gass P., Kretz O., Schütz G., and Tronche F. // Brain Res Bull. 2002. V. 57. P. 73–83.
  5. Doyle L.W., Ehrenkranz R.A., and Halliday H.L. // The Coch. Collab., ed., (Chichester, UK: John Wiley & Sons, Ltd, 2014), p. CD001145.pub3.
  6. Halliday H.L., Ehrenkranz R.A., and Doyle L.W. // The Coch. Collab., ed., (Chichester, UK: John Wiley & Sons, Ltd, 2009), p. CD001146.pub2.
  7. Nguon. K., Baxter M.G., and Sajdel‐Sulkowska E.M. // The Cerebell. 2005. V. 4. P. 112–122.
  8. Bhatt A.J., Feng Y., Wang J., Famuyide M., and Hersey K. // J. of Neurosci. Res. 2013. V. 91. P. 1191–1202.
  9. Holson R.R., Gough B., Sullivan P., Badger T., and Sheehan D.M. // Neurotoxicology and Teratology. 1995. V. 17. P. 393–401.
  10. Hossain A., Hajman K., Charitidi K., Erhardt S., Zimmermann U., Knipper M., and Canlon B. // Endocrin. 2008. V. 149. P. 6356–6365.
  11. Nagano M., Ozawa H., and Suzuki H. // Neurosc. Res. 2008. V. 60. P. 364–371.
  12. Aronsson M., Fuxe K., Dong Y., Agnati L.F., Okret S., and Gustafsson J.A. // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 9331–9335.
  13. Ábrahám I., Juhász G., Kékesi K.A., and Kovács K.J. // Brain Res. 1996. V. 733. P. 56–63.
  14. Takeda A., Suzuki M., Tamano H., Takada S., Ide K., and Oku N. // Neuroch. Intl. 2012. V. 60. P. 394–399.
  15. Zinchuk V. and Grossenbacher‐Zinchuk O. // CP Cell Biol. 2014. V. 62.
  16. Zinchuk V. and Grossenbacher‐Zinchuk O. // CP Cell Biol. 2011. V. 52.
  17. Adler J. and Parmryd I. // PLoS ONE. 2014. V. 9. P. e111983.
  18. Adler J. and Parmryd I. // Cyt. Pt A. 2010. V. 77A. P. 733–742.
  19. Dunn K.W., Kamocka M.M., and McDonald J.H. // Am. J. of Phys.-Cell Phys. 2011. V. 300. P. C723–C742.
  20. Varga J., Ferenczi S., Kovács K.J., Garafova A., Jezova D., and Zelena D. // PLoS ONE. 2013. V. 8. P. e72313.
  21. Bohn M.C., Dean D., Hussain S., and Giuliano R. // Dev. Brain Res. 1994. V. 77. P. 157–162.
  22. Tsiarli M.A., Paula Monaghan A., and DeFranco D.B. // Brain Res. 2013. V. 1523. P. 10–27.
  23. Vernocchi S., Battello N., Schmitz S., Revets D., Billing A.M., Turner J.D., and Muller C.P. // Mol. & Cell. Prot. 2013. V. 12. P. 1764–1779.
  24. Gutièrrez-Mecinas M., Trollope A.F., Collins A., Morfett H., Hesketh S.A., Kersanté F., and Reul J.M.H.M. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 13806–13811.
  25. Papadopoulos A., Chandramohan Y., Collins A., Droste S.K., Nutt D.J., and Reul J.M.H.M. // Eur. Neuropsych. 2011. V. 21. P. 316–324.
  26. Trollope A.F., Gutièrrez-Mecinas M., Mifsud K.R., Collins A., Saunderson E.A., and Reul J.M.H.M. // Exp. Neurol. 2012. V. 233. P. 3–11.
  27. Ben-Ari Y. // Nat Rev Neurosci. 2002. V. 3. P. 728–739.
  28. Lanshakov D.A., Sukhareva E.V., Kalinina T.S., and Dygalo N.N. // Neur. of Dis. 2016. V. 91. P. 1–9.
  29. Britanova O., Akopov S., Lukyanov S., Gruss P., and Tarabykin V. // Eur J of Neurosc. 2005. V. 21. P. 658–668.
  30. Baranek C., Dittrich M., Parthasarathy S., Bonnon C.G., Britanova O., Lanshakov D., Boukhtouche F., Sommer J.E., Colmenares C., Tarabykin V., and Atanasoski S. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 3546–3551.
  31. Alcamo E.A., Chirivella L., Dautzenberg M., Dobreva G., Farinas I., Grosschedl R., and McConnell S.K. // Neur. 2008. V. 57. P. 364–377.
  32. Britanova O., De Juan Romero C., Cheung A., Kwan K.Y., Schwark M., Gyorgy A., Vogel T., Akopov S., Mitkovski M., Agoston D., Šestan N., Molnár Z., and Tarabykin V. // Neur. 2008. V. 57. P. 378–392.
  33. Bae E.-J., Lee H.-S., Park C.-H., and Lee S.-H. // FEBS Let. 2009. V. 583. P. 1505–1510.
  34. Perlmann T. and Wallén-Mackenzie Å. // Cell Tissue Res. 2004. V. 318. P. 45–52.
  35. Hoerder-Suabedissen A., Oeschger F.M., Krishnan M.L., Belgard T.G., Wang W.Z., Lee S., Webber C., Petretto E., Edwards A.D., and Molnár Z. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 3555–3560.
  36. Hoerder-Suabedissen A. and Molnár Z. // Cereb. Cort. 2013. V. 23. P. 1473–1483.
  37. Oeschger F.M., Wang W.-Z., Lee S., García-Moreno F., Goffinet A.M., Arbonés M.L., Rakic S., and Molnár Z. // Cereb. Cort. 2012. V. 22. P. 1343–1359.
  38. Tolner E.A., Sheikh A., Yukin A.Y., Kaila K., and Kanold P.O. // J. Neurosci. 2012. V. 32. P. 692–702.
  39. Viswanathan S., Bandyopadhyay S., Kao J.P.Y., and Kanold P.O. // J. Neurosci. 2012. V. 32. P. 1589–1601.
  40. Friauf E., McConnell S., and Shatz C. // J. Neurosci. 1990. V. 10. P. 2601–2613.
  41. McConnell S., Ghosh A., and Shatz C. // J. Neurosci. 1994. V. 14. P. 1892–1907.
  42. McConnell S.K., Ghosh A., and Shatz C J. // Sci. 1989. V. 245. P. 978–982.
  43. Wang Z., Benoit G., Liu J., Prasad S., Aarnisalo P., Liu X., Xu H., Walker N.P.C., and Perlmann T. // Nat. 2003. V. 423. P. 555–560.
  44. Yu S., Yang S., Holsboer F., Sousa N., and Almeida O.F.X. // PLoS ONE. 2011. V. 6. P. e22419.
  45. Wyrwoll C.S., Holmes M.C., and Seckl J.R. // Front in Neuroendo. 2011. V. 32. P. 265–286.
  46. Rosewicz S., McDonald A.R., Maddux B.A., Goldfine I.D., Miesfeld R.L., and Logsdon C.D. // J. of Biol. Chem. 1988. V. 263. P. 2581–2584.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental scheme. The arrow indicates the material sampling.

Download (58KB)
3. Fig. 2. GR expression in the brain of neonatal rats on day 3 of life. GR – green, Alexa 488. In panoramic images of GR staining (1A), the CA1 region of the hippocampus and the entorhinal cortex are marked with white frames. Scale bar is 500 μm.

Download (544KB)
4. Fig. 3. High-NA objective images of double immunofluorescence staining of GR (green, Alexa 488) and cell type markers (red, Alexa 568) at 40x magnification in the CA1 region of the hippocampus (a) and the entorhinal cortex (b). Colocalization sites are marked with white triangles. Scale bar, 50 μm.

Download (656KB)
5. Fig. 4. Images of double immunofluorescence staining of GR (green, Alexa 488) and cell type markers (red, Alexa 568) taken with a high numerical aperture objective at 40x magnification in the entorhinal cortex before (a) and after (b) DEX administration. GR was translocated into the cell nucleus 6 h after DEX administration in the entorhinal cortex. Scale bar, 50 μm.

Download (779KB)

Copyright (c) 2024 Russian Academy of Sciences