ENHANCEMENT OF SEPARATION FLOW AND HEAT TRANSFER IN A BOOMERANG-TYPE GROOVE ON THE CHANNEL WALL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The self-organization of a tornado-like vortex enhanced by the formation of an extraordinary transverse pressure drop and the onset of a negative pressure pole in the tornado core is observed in the case of a 45∘ deviation of the inlet section of streamwise oriented groove on the heated wall of plane-parallel channel with increase in the relative length of the section ξ, starting from 0.15. Tornado generation leads to the development of abnormal separation flow and heat transfer enhancement in the inlet inclined part of the groove. It is known that in the inclined rectilinear grooves the abnormal enhancement of separation flow and heat transfer is characterized by weakening of vortex structures and suppression of heat transfer in the end part of the groove. It is found that at the optimum relative length ξ the orientation of the end section of the groove along the flow in the channel leads to the penetration of intense swirling flow into the end zone of the boomerang-type groove and enhances heat transfer here. The optimal length of the inlet section ξ = 0.35 is determined. At this length, a 29% increase in the maximum heat transfer from the inner groove surface compared to the plane channel wall is achieved. In this case, the heat removal inside the boomerang-type groove is 1.2 times higher than that for the straight groove at the 45∘ inclination angle. The critical length of the inlet section (ξ = 0.7) starting from which the swirling flow leaves the groove without reaching its end is found. The critical length is characterized by the minimum relative hydraulic losses for the section bounded by the contour of the groove spot.

About the authors

S. A. Isaev

St. Petersburg State Marine Technical University; St. Petersburg State University of Civil Aviation

Email: isaev3612@yandex.ru
St. Petersburg, Russia; St. Petersburg, Russia

I. A. Popov

Tupolev Kazan National Research Technical University – Kazan Aviation Institute (KAI)

Kazan, Russia

D. V. Nikushchenko

St. Petersburg State Marine Technical University

St. Petersburg, Russia

A. G. Sudakov

St. Petersburg State University of Civil Aviation

St. Petersburg, Russia

A. A. Klyus

St. Petersburg State University of Civil Aviation

St. Petersburg, Russia

A. A. Mironov

Tupolev Kazan National Research Technical University – Kazan Aviation Institute (KAI)

Kazan, Russia

References

  1. Rashidi S., Hormozi F., Sunden B., Mahian O. Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications // Appl. Energy. 2019. V.259. P. 1491–1547.
  2. Chyu M.K., Yu Y., Ding H. Heat transfer enhancement in rectangular channels with concavities // Enhanced Heat Transfer. 1999. V. 6. P. 429–439.
  3. Rao Y., Li B., Feng Y. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples // Experimental Thermal and Fluid Science. 2015. V. 61. P. 201–209.
  4. Ilinkov A.V., Shchukin A.V., Takmovtsev V.V., Khabibullin I.I., Zaripov I.Sh. Increasing the strength of large-scale vertical structures in diffuser dimples. J. Russian Aeronautics. 2020. V. 63. № 2. P. 278–282. https://doi.org/10.3103/S1068799820020129
  5. Chen Y., Chew Y.T., Khoo B.C. Enhancement of heat transfer in turbulent channel flow over dimpled surface // Int. J. Heat and Mass Transfer. 2012. V. 55. P. 8100–8121.
  6. Jordan C.N., Wright L.M. Heat transfer enhancement in a rectangular (AR=3:1) channel with V-shaped dimples // J. Turbomachinery. 2013. V. 135. P. 011028-1.
  7. Katkhaw N., Vorayos N., Kiatsiriroat T., Khunatorn Y., Bunturat D., Nuntaphan A. Heat transfer behavior of flat plate having 45 ellipsoidal dimpled surfaces // Case Stud. Therm. Eng. 2014. V. 2. P. 67–74.
  8. Hao Y.-P., Shao J.-K., Li Z.-Y. Thermal-hydraulic performance investigation of the cooling passage featuring the ridged V-shaped dimple // Numerical Heat Transfer, Part A: Applications, 2024. https://doi.org/10.1080/10407782.2024.2361472
  9. Leontiev A.I., Kiselev N.A., Vinogradov Yu.A., Strongin M.M., Zditovets A.G., Burtsev S.A. Experimental investigation of heat transfer and drag on surfaces coated with dimples of different shape // Int. J. Thermal Sciences. 2017. V. 118. P. 152–167. https://doi.org/10.1016/j.ijthermalsci.2017.04.027
  10. Cheng Y., Rao Y., Xie Y. Large eddy simulations and experiments on low-Reynolds-number laminar separation control for low-pressure turbine blades with oblong-dimpled surface // Aerospace Science and Technology. 2023. V. 142. 108606. https://doi.org/10.1016/j.ast.2023.108606
  11. Zhang P., Rao Y., Ligrani P.M. Experimental study of turbulent flow heat transfer and pressure loss over surfaces with dense micro-depth dimples under viscous sublayer // Int. J. Thermal Sciences. 2022. V. 177. № 3. 107581. https://doi.org/10.1016/j.ijthermalsci.2022.107581
  12. Isaev S., Gritckevich М., Leontiev А., Popov I. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall // Acta Astronautica. 2019. V. 163 (Part A). P. 202–207.
  13. Isaev S.A., Gritckevich M.S., Leontiev A.I., Milman O.O., Nikushchenko D.V. NT Vortex enhancement of heat transfer and flow in the narrow channel with a dense packing of inclined one-row oval-trench dimples // Int. J. Heat Mass Transf. 2019. V. 145. P. 118737.1–13.
  14. Isaev S.A., Leont’ev A.I., Nikushchenko D.V., Sudakov A.G., Usachov A.E. Intensification of the detached flow in a single row of inclined oval trench dimples on the wall of a narrow channel // J. Eng. Physics and Thermophysics. 2021. V. 94. №. P. 151–159.
  15. Isaev S.A. Genesis of anomalous intensification of separation flow and heat transfer in inclined grooves on structured surfaces // Fluid Dynamics. 2022. V. 57. №5. P. 558–570. https://doi.org/10.1134/S0015462822050081
  16. Isaev S.A., Guvernyuk S.V., Nikushchenko D.V., Sudakov A.G., Sinyavin A.A., Dubko E.B. Correlation between the abnormal enhancement of the separated flow and extraordinary pressure drops in the groove on the plate when the angle of inclination changes from 0 to 90о // Technical Physics Letters. 2023. V. 49. № 8. P. 33–36. https://doi.org/10.61011/TPL.2023.08.56684.19560
  17. Zubin M.A. and Zubkov A.F. Structure of separation flow past a cylindrical cavity in the wall of a plane channel // Fluid Dynamics. 2022. V. 57. № 1. P. 77–85. https://doi.org/10.1134/S0015462822010128
  18. Isaev S.A., Sudakov A.G., Nikushchenko D.V., Usachov A.E., Zubin M.A., Sinyavin A.A., Chulyunin A.Yu. and Dubko E.B. Tests for validation problems of anomalous intensification of separation flow and heat transfer on structured surfaces with extraordinary pressure differences // Fluid Dynamics. 2023. V. 58. № 5. P. 894–905. https://doi.org/10.1134/S001546282360133X
  19. Isaev S.A., Sapozhnikov S.Z., Nikushchenko D.V., Mityakov V.Yu., Seroshtanov V.V. and Dubko E.B. Anomalous intensification of vortex heat transfer in the case of separated air flow over an inclined groove in a hot isothermal region of a flat plate // Fluid Dynamics. 2024. V. 59. № 1. P. 45–59.
  20. Isaev S.A., Klyus A.A., Sudakov A.G., Nikushchenko D.V., Usachov A.E., Seroshtanov V.V., Chulyunin A.Yu. Validation test of parallelized codes in the study of flow and heat transfer anomalous enhancement in a single inclined groove on a plate // Supercomputing Frontiers and Innovations. 2024. Vol. 11. № 2. P. 4–13. https://doi.org/10.14529/js_240201
  21. Isaev S.A., Sudakov A.G., Nikushchenko D.V., Kharchenko V.B., Iunakov L.P. The effect of boundary conditions on the modeling of anomalous intensification of turbulent heat transfer in an inclined groove in the wall of a narrow channel // Fluid Dynamics. 2023. V. 58. № 6. P. 1004–1013. https://doi.org/10.1134/S0015462823601304
  22. Isaev S.A., Mil’man O.O., Klyus A.A., Nikushchenko D.V., Khmara D.S., Yunakov L.P. Anomalous heat transfer enhancement in separated flow over a zigzag-shaped dense package of inclined grooves in a channel wall at different temperature boundary conditions // Fluid Dynamics. 2024. V. 59. № 2. P. 238–259.
  23. Исаев С.А., Леонтьев А.И., Гортышов Ю.Ф., Попов И.А., Миронов А.А., Скрыпник А.Н., Аксянов Р.Х. Теплообменная поверхность. Патент РФ. RU 2768667 C1, МПК F28F 3/04 (2006.01). Заявка 2021115548, 31.05.2021 опубликована 24.03.2022. Бюл. № 9.
  24. Isaev S.A., Baranov P.A., Usachov A.E. Multiblock Computational Technologies in the VP2/3 Package on Aerothermodynamics; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013.
  25. Menter F.R. Zonal two equation k–ω turbulence models for aerodynamic flows // AIAA Paper. 1993. № 93–2906. 21p.
  26. Isaev S.A., Sudakov A.G., Baranov P.A., Zhukova Yu.V., Usachov A.E. Analysis of errors of multiblock computational technologies by the example of calculating a circulation flow in a square cavity with a moving cover at Re = 1000 // Journal of Engineering Physics and Thermophysics. 2013. V. 86. Issue 5. P.1134–1150.
  27. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. Thesis submitted for the Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College of Science, Technology and Medicine, 1996. 394 p.
  28. Van Doormaal J.P., Raithby G.D. Enhancement of the SIMPLE method for predicting incompressible fluid flow // Numerical Heat Transfer. 1984. V. 7. № 2. P. 147–163.
  29. Rhie C.M., Chow W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation // AIAA J. 1983. V. 21. P. 1525–1532.
  30. Pascau A., Garcia N. Consistency of SIMPLEC scheme in collocated grids // Proc. V European Conf. on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal, 2010. 12 p.
  31. Leonard B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comp. Meth. Appl. Mech. Eng. 1979. V. 19. № 1. P. 59–98.
  32. Van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method // J. Comp. Phys. 1979. V. 32. P. 101–136.
  33. Saad Y. Iterative methods for sparse linear systems. 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003. 567 p.
  34. Demidov D. AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method. http://amgcl.readthedocs.org/
  35. Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E. Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel // Int. J. Heat Mass Transfer. 2010. V. 53. № 1–3. P. 178.
  36. Herwig H., Kock F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems // Heat Mass Transfer. 2007. V. 43. P. 207–215.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences