REACTION OF METHANE REPLACEMENT WITH CARBON DIOXIDE IN HYDRATE DURING INJECTION OF LIQUID CARBON DIOXIDE INTO FORMATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of liquid carbon dioxide injection into a formation containing methane hydrate, water and free methane is considered. Estimates of the main parameters show that the reaction of methane hydrate substitution by carbon dioxide hydrate without external heat influx is possible only in the presence of free water in the rock. Based on the analysis of the thermodynamic diagram of the phase state, a mathematical model of liquid CO2 injection accompanied by the reaction of methane substitution by carbon dioxide in the hydrate is formulated. It is assumed that the region of methane hydrate decomposition and carbon dioxide hydrate formation can be approximated by a narrow front. The found asymptotic solution reduces the problem to a numerical study of transcendental equations. Based on the results of numerical experiments, characteristic regimes of liquid carbon dioxide injection are presented, allowing the substitution reaction to occur.

About the authors

G. G Tsypkin

Ishlinsky Institute for Problems in Mechanics RAS

Email: tsypkin@ipmnet.ru
Moscow, Russia

References

  1. Ohgaki K., Takano K., Sangawa H. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-Ch4 mixed hydrate system // J. Chem. Eng. Jpn. 1996. V 29. P. 478—483.
  2. Goel N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues // J. Petrol. Sci. Eng. 2006. V 51. P 169-184.
  3. Zhou X, Fan S, Liang D, Du J. Determination of appropriate condition on replacing from hydrate with carbon dioxide // Energy Convers. Manag. 2008. V. 49. P. 2124-2129.
  4. Rossi F., Gambelli A.M., Sharma D.K., Castellani B., Nicolini A., Castaldi M.J. Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies // Appl. Therm. Eng. 2019. V. 148. P. 371-381.
  5. Gambelli A.M, Rossi F. Natural gas hydrates: comparison between two different applications of thermal stimulation for performing CO2 replacement // Energy. 2019. V. 172. P. 423-434.
  6. White M.D., Wurstner S.K., McGrail B.P. Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection // Marine Petrol. Geol. 2011. V. 28. P. 546-560.
  7. Цыпкин Г.Г. Образование гидрата углекислого газа при его инжекции в истощенное месторождение углеводородов // Изв. РАН. МЖГ. 2014. № 6. С. 101-108.
  8. Хасанов М.К. Математическая модель образования гидрата диоксида углерода при инжекции углекислого газа в метаногидратный пласт // Теоретические основы химической технологии. 2017. Т. 51. № 5. С. 499-509.
  9. Цыпкин Г.Г. Термодинамические условия образования гидрата CO2 при инжекции углекислоты в пласт, содержащий гидрат метана // Изв. РАН. МЖГ. 2018. № 5. С. 103-112.
  10. Tsypkin G.G. Analytical study of CO2-CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane // Energy. 2021. V. 233. 121115.
  11. Цыпкин Г.Г. Математическая модель замещения метана в гидрате углекислым газом при его инжекции в пласт, насыщенный смесью гидрата, метана и воды // Труды МИАН им. В.А. Стеклова. 2023. Т. 322. С. 233-240.
  12. Afanasyev A.A. Multiphase compositional modelling of CO2 injection under subcritical conditions: The impact of dissolution and phase transitions between liquid and gaseous CO2 on reservoir temperature // Int. J. Greenhouse Gas Control. 2013. V. 19. P. 731-742.
  13. Hirohama S., Shimoyama Y., Wakabayashi A., et al. Conversion of CH4-hydrate to CO2-hydrate in liquid CO2 // J. Chem. Eng. Japan. 1996. V. 29. N6. P. 1014-1020.
  14. Ota M., Morohashi K., Abe Y., et al. Replacement of CH4 in the hydrate by use of liquid CO2 // Energy Convers. Manag. 2005. V. 46. P. 1680-1691.
  15. Sun X., Wang Z., Sun B., Wang W. Research on hydrate formation rules in the formations for liquid CO2 fracturing // J. Nat. Gas Sci. Eng. 2016 V. 33. P. 1390-1401.
  16. Agrawal R., Kumar Y., Sarkhel R., et al. Enhancing the CO2 sequestration potential in subsea terrain by hydrate formation from liquid CO2 // Energy and Fuels. 2023. V. 37. N 19. P. 14961-14976.
  17. Majid A.A.A. Gas hydrate technological applications: From energy recovery to carbon capture and storage // Gas Sci. Eng. 2024. V. 131. 205455.
  18. Wilson I., Saini S., Sreenivasan H., et al. Review and Perspectives of Energy-Efficient Methane Production from Natural Gas Hydrate Reservoirs Using Carbon Dioxide Exchange Technology // Energy and Fuels. 2023. V. 37. N. 14. P 9841-9872.
  19. Mwakipunda G.Ch., Abelly E.N., Mgimba M.M., et al. Critical Review on Carbon Dioxide Sequestration Potentiality in Methane Hydrate Reservoirs via CO2-CH4 Exchange: Experiments, Simulations, and Pilot Test Applications // Energy and Fuels. 2023. V. 37. N 15. P. 10843-10868.
  20. Anderson G.K. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation // J. Chem. Thermodyn. 2004. V. 36. P. 1119-1127.
  21. Anderson G.K. Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation // J. Chem. Thermodyn. 2003. V. 35. P. 1171-1183.
  22. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. Наука. ФИЗМАТЛИТ. Москва. 1972. 270 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences