Влияние снежного покрова на гидродинамические нагрузки тонкого тела, движущегося в жидкости под ледяным покровом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается движение тонкого тела в жидкости под ледяным покровом, покрытым влажным снегом. Предполагается, что жидкость идеальная и несжимаемая, движение жидкости потенциальное. Ледяной покров моделируется вязкоупругой плавающей пластиной, снежный покров моделируется вязким слоем. Аналитически получены формулы расчета волнового сопротивления, подъемной силы и крутящего момента, действующих на тонкое тело, нестационарно и прямолинейно движущееся в жидкости под ледяным и снежным покровами. Численный анализ результатов показывает, что снежный покров уменьшает абсолютные значения экстремумов гидродинамических нагрузок. Анализируется совместное влияние увеличения толщины снежного покрова, уменьшения глубины погружения тела, увеличения толщины ледяного покрова, уменьшения глубины водоема на величину гидродинамических нагрузок.

Об авторах

В. Л. Земляк

Приамурский государственный университет им. Шолом-Алейхема

Автор, ответственный за переписку.
Email: vellkom@list.ru
Россия, Биробиджан

В. М. Козин

Институт машиноведения и металлургии ХФИЦ ДВО РАН

Email: kozinvictor@rambler.ru
Россия, Комсомольск-на-Амуре

А. В. Погорелова

Приамурский государственный университет им. Шолом-Алейхема

Email: milova@yandex.ru
Россия, Биробиджан

Список литературы

  1. Хейсин Д.Е. Динамика ледяного покрова. Л.: Гидрометеоиздат, 1967.
  2. Букатов А.Е., Жарков В.В. Влияние плавающей упругой пластины на поверхностные проявления внутренних волн при движении источника в неоднородной жидкости // Изв. РАН. МЖГ. 1995. № 2. С. 118–125.
  3. Козин В.М., Онищук А.В. Модельные исследования волнообразования в сплошном ледяном покрове от движения подводного судна // ПМТФ. 1994. № 2. С. 78–81.
  4. Kozin V.M., Zemlyak V.L. Study on Wave Resistance of a Submarine Moving Under an Ice Sheet// Proc. 22nd Int. Offshore and Polar Eng. Conf., Rhodes, ISOPE. 2012. V. 1. P. 1312–1314.
  5. Gray D.M., Male D.H. Handbook of Snow: Principles, Processes, Management and Use. Toronto: Pergamon Press, 1981.
  6. Mellor M. Engineering properties of snow// J. Glaciol. 1977. V. 81. № 19. P. 15–66.
  7. Войтковский К.Ф. Механические свойства снега. М.: Наука, 1977.
  8. Prinsenberg S.J., Peterson I.K., Holladay J.S., Lalumiere L. Snow and Ice Thickness Properties of Lake Melville, a Canadian Fjord Located along the Labrador Coast // Proc.21st Int. Offshore and Polar Eng. Conf., Maui, ISOPE.2011. P. 935–941.
  9. Радионов В.Ф., Александров Е.И., Брязгин Н.Н., Дементьев А.А. Изменения температуры, осадков и снежного покрова в районах Арктических морей за 1981–2010 гг. // Лед и снег. 2013. Т. 53. № 1. С. 61–68.
  10. Golubev V.N., Frolov A.D. Modelling the change in structure and Mechanical properties in dry-snow densification to ice // Ann. Glaciol. 1998.V. 26. P. 45–50.
  11. Епифанов В.П. Применение акустических методов в исследовании снежного покрова //Криосфера Земли. 2014. Т. 18. № 3. С. 101–113.
  12. Nakaya U. Visco-elastic properties of snow and ice in Greenland Ice Cap // J. Fac. Sci. Hokkaido Univ. Jpn. Ser. II. 1958. V. 5. № 3. P. 119–164.
  13. Shinojima K. Study on the Visco-Elastic Deformation of Deposited Snow // Phys. Snow Ice. 1967. V. 1. № 2. P. 875–907.
  14. Kojima S., Nakamura K., Naoki K., Enomoto H. Temperature Properties of Snow on Sea Ice with Water Infiltration // Proc. 19th Int. Offshore and Polar Eng. Conf., Osaka, ISOPE. 2009. V. 1. P. 558–563.
  15. Pogorelova A.V., Kozin V.M., Zemlyak V.L. The Effect of Snow on Ice Plate Deflections Generated by Moving Body under an Ice Plate // Proc. 27th Int. Offshore and Polar Eng. Conf., San-Francisco, ISOPE. 2017. V.1. P. 1311–1318.
  16. Pogorelova A.V., Zemlyak V.L., Kozin V.M. Body motion in liquid under ice plate with snow cover // Appl. Ocean Res. 2019. V. 84. P. 32–37. https://doi.org/10.1016/j.apor.2018.12.014
  17. Havelock T.H. Some Cases of Wave Motion Due to a Submerged Obstacle // Proc. R. Soc. Lond. 1917. V. 93. P. 520–532.
  18. Havelock T.H. The wave resistance of a spheroid // Proc. R. Soc. Lond. 1931. V. 131. P. 275–285.
  19. Havelock T.H. The Wave Resistance of an Ellipsoid // Proc. R. Soc. Lond. 1931. V. 132. P. 480–486.
  20. Kinoshita M., Inui T. Wave making resistance of a submerged spheroid, ellipsoid and a ship in a shallow water // J. Zosen Kiokai. 1953. V. 75. P. 119–135
  21. Wigley W.C.S. Water Forces on Submerged Bodies in Motion // Trans. Inst. Nav. Archit. 1953. V. 95. P. 268–279.
  22. Farell C. On the Wave Resistance of a Submerged Spheroid // J. Ship Res. 1973. V. 17. № 1. P. 1–11.
  23. Doctors L., Beck R. Convergence Properties of the Neumann-Kelvin Problem for a Submerged Body // J. Ship Res. 1987. V. 31. № 4. P. 227–234.
  24. Weinblum G., Amtsberg H., Bock W. Tests on Wave Resistance of Immersed Bodies of Revolution. Washington D.C.: The David W. Taylor Model Basin. 1950.
  25. Gertler M. Resistance Experiments on a Systematic Series of Streamlined Bodies of Revolution – For Application to the Design of High-Speed Submarines. Washington D.C.: Navy Departmnt: The David W. Taylor Model Basin. 1950.
  26. Farell C., Güven O. On the Experimental Determination of the Resistance Components of a Submerged Spheroid // J. Ship Res. 1973. V. 17. P. 72–79.
  27. Griffin M.J. Numerical Prediction of the Maneuvring Characteristics of Submarines Operating Near the Free Surface. PhD in Ocean Engineering, Massachusetts Institute of Technology. 2002.
  28. Dawson E. An investigation into the effects of submergence depth, speed and hull length-to-diameter ratio on the near-surface operation of conventional submarines. PhD thesis, University of Tasmania, Hobart, Australia. 2014.
  29. Gourlay T.P., Dawson E.A. Havelock-source panel method for near-surface submarines //J. Marine Sci. Appl. 2015. V. 15. № 3. P. 215–224. https://doi.org/10.1007/s11804-015-1319-5
  30. Crook T.P. An Initial Assessment of Free Surface Effects on Submerged Bodies, MSc Mechanical Engineering, Naval Postgraduate College. USA. 1994.
  31. Pogorelova A.V., Kozin V.M., Zemlyak V.L. Hydrodynamic forces on slender body advancing in water with ice cover// Proc.30th Int. Ocean Pol Eng. Conf., Shanghai, China, ISOPE. 2020. V. 1. P. 707–714.
  32. Pogorelova A.V., Kozin V.M., Zemlyak V.L. The Effect of an Ice Cover on the Trimming Moment of Submarines// IJOPE. 2022. V. 32. № 4. P. 440–447. 10.17736/ijope.2022.jc872' target='_blank'>https://doi: 10.17736/ijope.2022.jc872
  33. Pogorelova A.V., Zemlyak V.L., Kozin V.M. Effect of the viscoelasticity of an ice cover on wave resistance and lift force experienced by Joubert submarine // Acta Mech. 2023. V. 234. P. 2399–2411. https://doi.org/10.1007/s00707-023-03500-x
  34. Zemlyak V.L., Pogorelova A.V., Kozin V.M. Motion of a submerged body in a near-surface water environment //Int. J. Nav. Archit. Ocean Eng. 2022.V. 14. Article 100433. https://doi.org/10.1016/j.ijnaoe.2021.100433.
  35. Freudental A.M., Geiringer H. The Mathematical Theories of the Inelastic Continuum. Berlin: Springer-Verlag, 1962.
  36. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Т. 1. М.: Физматлит, 1963. 583 с.
  37. Moonesun M., Korol Y.M. Naval submarine body form design and hydrodynamics. Beau Bassin: LAMBERT Academic Publishing, 2017. 312 p.
  38. Mackay M. The Standard Submarine Model: A Survey of Static Hydrodynamic Experiments and Semiempirical Predictions.DRDC TR2003–079. Defence R&D Canada – Atlantic, 2003. 98 p.
  39. Сретенский Л.Н. Теория волновых движений жидкости. М.: Наука, 1977.
  40. Squire V.A., Hosking R.J., Kerr A.D., Langhorne P.J. Moving Loads on Ice Plates. Kluwer Acad., Dordrecht. 1996.
  41. Takizava T. Deflection of a floating sea ice sheet induced by a moving load // Cold Regions Sci. Technol. 1985. V. 11. P. 171–180.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024