Numerical Modeling of the Drag Crisis in Flow past a Sphere Using a Vortex-Resolving Approach

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The drag crisis in flow past a sphere is modeled within the framework of the recently formulated vortex-resolving hybrid RANS–LES approach, which includes a semi-empirical model of laminar-turbulent transition. The calculations performed in a wide Reynolds number range show that the complex model used yields a qualitatively adequate description of all aspects of the drag crisis including such fine effects, as the growth of the side force oscillation amplitude at near-critical Reynolds numbers. At the same time, the results obtained indicate that it is very fine computation grids that should be used for obtaining qualitatively accurate predictions of the critical Reynolds number and the details of laminar-turbulent transition in near-critical flow regimes.

About the authors

A. S. Stabnikov

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: an.stabnikov@gmail.com
Russian Federation, St. Petersburg, 195251

A. V. Garbaruk

Peter the Great St. Petersburg Polytechnic University

Email: an.stabnikov@gmail.com
Russian Federation, St. Petersburg, 195251

M. K. Strelets

Peter the Great St. Petersburg Polytechnic University

Email: an.stabnikov@gmail.com
Russian Federation, St. Petersburg, 195251

References

  1. Лойцянский Л.Г. Механика жидкости и газа. М. -Л.: Гостехиздат, 1950. 676 с.
  2. Шлихтинг Г. Теория Пограничного Слоя. 5-е изд. М.: Наука, 1974. 712 с.
  3. Tiwari S.S., Pal E., Bale S., Minocha N., Patwardhan A.W., Nandakumar K., Joshi J.B. Flow past a single stationary sphere, 2. Regime mapping and effect of external disturbances // Powder Technol. 2020. V. 365. P. 215–243.
  4. Taneda S. Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106 // J. Fluid Mech. 1978. V. 85, № 1. P. 187–192.
  5. Norman A.K., McKeon B.J. Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers // Exp. Fluids. 2011. Т. 51. № 5. С. 1439–1453.
  6. Deshpande R., Desai A., Kanti V., Mittal S. Experimental investigation of boundary layer transition in flow past a bluff body // J. Phys. Conf. Ser. 2017. V. 822. С. 012003.
  7. Sakamoto H., Haniu H. A Study on Vortex Shedding From Spheres in a Uniform Flow // J. Fluids Eng. 1990. V. 112, № 4. P. 386–392.
  8. Constantinescu G., Squires K. Numerical investigations of flow over a sphere in the subcritical and supercritical regimes // Phys. Fluids. 2004. V. 16, № 5. P. 1449–1466.
  9. Muto M., Tsubokura M., Oshima N. Negative Magnus lift on a rotating sphere at around the critical Reynolds number // Phys. Fluids. 2012. V. 24, № 1. P. 014102.
  10. Texier B.D., Cohen C., Quéré D., Clanet C. Physics of knuckleballs // New J. Phys. 2016. V. 18, № 7. P. 073027.
  11. Suzen Y., LeBeau R. Cylinder Flow Simulation Using Combined Hybrid Turbulence and Transition Models // 38th Fluid Dynamics Conference and Exhibit. Seattle, Washington: American Institute of Aeronautics and Astronautics, 2008.
  12. Sørensen N.N., Bechmann A., Zahle F. 3D CFD computations of transitional flows using DES and a correlation based transition model // Wind Energy. 2011. V. 14, № 1. P. 77–90.
  13. You J.Y., Kwon O.J. A Blended Model for Simulating Massive Flow Separation and Laminar-Turbulence Transition // 42nd AIAA Fluid Dynamics Conference and Exhibit. New Orleans, Louisiana: American Institute of Aeronautics and Astronautics, 2012.
  14. Hodara J., Smith M.J. Improved Turbulence and Transition Closures for Separated Flows // Proceedings of 41st European Rotorcraft Forum (ERF2015-113). Munich, Germany, 2015. P. 18.
  15. Kim H.J., Kwon O.J. Numerical Simulation of Transitional Flows Using a Blended IDDES and Correlation-Based Transition Model // Comput. Fluids. 2021. 104916.
  16. Spalart P.R., Jou W.H., Strelets M., Allmaras S.R. Comments on the feasibility of LES for winds, and on a hybrid RANS/LES approach. 1997.
  17. Spalart P. R., Deck S., Shur M.L., Squires K.D., Strelets M. Kh., Travin A. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities // Theor. Comput. Fluid Dyn. 2006. V. 20, № 3. P. 181–195.
  18. Probst A., Schwamborn D., Garbaruk A., Guseva E., Shur M., Strelets M., Travin A. Evaluation of grey area mitigation tools within zonal and non-zonal RANS-LES approaches in flows with pressure induced separation // Int. J. Heat Fluid Flow. 2017. V. 68. P. 237–247.
  19. Qiao L., Bai J., Hua J., Wang C. Combination of DES and DDES with a Correlation Based Transition Model // Appl. Mech. Mater. 2013. V. 444–445. P. 374–379.
  20. Coder J.G., Ortiz-Melendez H.D. Transitional Delayed Detached-Eddy Simulation of Multielement High-Lift Airfoils // J. Aircr. 2019. V. 56, № 4. P. 1303–1312.
  21. Стабников А. С., Гарбарук А.В. Алгебраическая модель ламинарно-турбулентного перехода для расчета турбулентных течений на основе метода моделирования отсоединенных вихрей // НТВ СПбГПУ. Физ.-мат. науки, 2022, т. 15, № 1, с. 16–29.
  22. Menter F.R., Kuntz M., Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model // Heat Mass Transf. 2003. V. 4.
  23. Gritskevich M. S., Garbaruk A.V., Schütze J., Menter F.R. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model // Flow Turbul. Combust. 2012. V. 88, № 3. P. 431–449.
  24. Shur M., Strelets M., Travin A. High-Order Implicit Multi-Block Navier-Stokes Code: Ten-Years Experience of Application to RANS/DES/LES/DNS of Turbulent Flows // Invited lecture. 7th Symposium on Overset Composite Grids and Solution Technology. Huntington Beach, USA. 2004.
  25. Rogers S., Kwak D. An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations // 6th Applied Aerodynamics Conference. Williamsburg, VA, U.S.A.: American Institute of Aeronautics and Astronautics, 1988.
  26. Chorin A.J. A numerical method for solving incompressible viscous flow problems // J. Comput. Phys. 1967. V. 2, № 1. P. 12–26.
  27. Travin A., Shur M., Strelets M., Spalart P.R. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows // Advances in LES of Complex Flows / под ред. Friedrich R., Rodi W. Dordrecht: Springer Netherlands, 2002. V. 65. P. 239–254.
  28. Kim S.-E., Makarov B. An Implicit Fractional-Step Method for Efficient Transient Simulation of Incompressible Flows // 17th AIAA Computational Fluid Dynamics Conference. Toronto, Ontario, Canada: American Institute of Aeronautics and Astronautics, 2005.
  29. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. 1994. V. 32, № 8. P. 1598–1605.
  30. Achenbach E. Experiments on the flow past spheres at very high Reynolds numbers // J. Fluid Mech. 1972. V. 54, № 3. P. 565–575.
  31. Zore K., Matyushenko A., Shah S., Aliaga C., Stokes J., Menter F. Laminar–Turbulent Transition Prediction on Industrial Computational Fluid Dynamics Applications // J. Aircr. 2023. V. 60, № 1. P. 1–20.
  32. Matyushenko A.A., Stabnikov A.S., Garbaruk A.V. Criteria of computational grid generation for turbulence models taking into account laminar-turbulent transition // J. Phys. Conf. Ser. 2019. V. 1400. 077047.
  33. Spalart P.R. Young-Person’s Guide to Detached-Eddy Simulation Grids: Contractor Report NASA/CR-2001–211032. 2001. P. 23.
  34. Nakhostin S.M., Giljarhus K.E.T. Investigation of transitional turbulence models for CFD simulation of the drag crisis for flow over a sphere // IOP Conf. Ser. Mater. Sci. Eng. 2019. V. 700. P. 012007.
  35. Prandtl L. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. Verlag R. Oldenbourg: 1923.
  36. Bakić V. Experimental investigation of turbulent flows around a sphere. 2003. P. 86.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences