Sting signaling pathway as a target for neuroprotective therapy in Parkinson's disease

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, characterized by the loss of dopaminergic neurons and the accumulation of aggregated alpha-synuclein protein. The molecular mechanisms underlying PD pathogenesis remain largely unknown, and as a result, no effective neuroprotective therapies are currently available. However, recent research has identified a link between alpha-synuclein accumulation and aggregation, activation of type I interferon responses in microglia, and subsequent neurodegeneration. STING (Stimulator of Interferon Genes) is a key regulator of innate immunity, responsible for the production of type I interferons and the orchestration of inflammatory responses. Upon activation, STING initiates signaling cascades that regulate immune responses, cell death mechanisms, and autophagy. In the context of PD, STING hyperactivation may contribute to the progression of neuroinflammation and associated neurodegeneration. Therefore, the development of STING inhibitors capable of modulating its activity is considered a promising therapeutic strategy for PD. At the same time, due to the multifunctional roles of STING in cellular processes, therapeutic approaches targeting STING in PD must carefully balance its activity and therapeutic efficacy. This balance may be achieved through combinatory treatments involving STING inhibitors and compounds that reduce alpha-synuclein levels. This review discusses the structural features and activation mechanisms of STING, its role in the regulation of cell death and autophagy, as well as potential therapeutic strategies targeting this pathway for the development of novel treatments for PD–particularly PD associated with mutations in the GBA1 gene.

Texto integral

Acesso é fechado

Sobre autores

T. Usenko

Petersburg Nuclear Physics Institute, Kurchatov Institute National Research Center; Pavlov First Saint Petersburg State Medical University

Autor responsável pela correspondência
Email: usenko_ts@pnpi.nrcki.ru
Rússia, Gatchina; Saint Petersburg

Bibliografia

  1. Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C (2024) The epidemiology of Parkinson’s disease. The Lancet 403(10423): 283–292.
  2. Jung SY, Chun S, Cho E Bin, Han K, Yoo J, Yeo Y, Yoo JE, Jeong SM, Min JH, Shin DW (2023) Changes in smoking, alcohol consumption, and the risk of Parkinson’s disease. Front Aging Neurosci 5: 1223310. https://doi.org/10.3389/fnagi.2023.1223310
  3. Bantle CM, Hirst WD, Weihofen A, Shlevkov E (2021) Mitochondrial Dysfunction in Astrocytes: A Role in Parkinson’s Disease? Front Cell Dev Biol 8: 608026.
  4. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial Complex I Deficiency in Parkinson’s Disease. J Neurochem 54(3): 823–827. https://doi.org/10.1111/j.1471-4159.1990.tb02325.x
  5. Parker WD, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189: 215–218. https://doi.org/10.1016/j.brainres.2007.10.061
  6. Bonifati V, Rizzu P, Van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MCJ, Squitieri F, Ibanez P, Joosse M, Van Dongen JW, Vanacore N, Van Swieten JC, Brice A, Meco G, Van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science (1979) 299(5604): 256–259. https://doi.org/10.1126/science.1077209
  7. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denèfle P, Wood NW, Agid Y, Nicholl D, Breteler MMB, Oostra BA, De Mari M, Marconi R, Filla A, Bonnet A-M, Broussolle E, Pollak P, Rascol O, Rosier M, Arnould A, Brice A (2000) Association between Early-Onset Parkinson’s Disease and Mutations in the Parkin Gene. New Engl J Med 342(21): 1560–1567. https://doi.org/10.1056/nejm200005253422103
  8. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science (1979) 304(5674): 1158–1160. https://doi.org/10.1126/science.1096284
  9. Shadrina MI, Slominsky PA (2023) Genetic Architecture of Parkinson’s Disease. Biochemistry (Moscow) 88(3): 417–433.
  10. Hu M, Li P, Wang C, Feng X, Geng Q, Chen W, Marthi M, Zhang W, Gao C, Reid W, Swanson J, Du W, Hume RI, Xu H (2022) Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 185(13): 2292-2308.e20. https://doi.org/10.1016/j.cell.2022.05.021
  11. Emelyanov AK, Usenko TS, Tesson C, Senkevich KA, Nikolaev MA, Miliukhina I V., Kopytova AE, Timofeeva AA, Yakimovsky AF, Lesage S, Brice A, Pchelina SN (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol Aging 71: 267.e7–267.e10. https://doi.org/10.1016/j.neurobiolaging.2018.06.027
  12. Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A, Cormier-Dequaire F, Hassoun SM, Pujol C, Ciura S, Erpapazoglou Z, Usenko T, Maurage CA, Sahbatou M, Liebau S, Ding J, Bilgic B, Emre M, Erginel-Unaltuna N, Guven G, Tison F, Tranchant C, Vidailhet M, Corvol JC, Krack P, Leutenegger AL, Nalls MA, Hernandez DG, Heutink P, Gibbs JR, Hardy J, Wood NW, Gasser T, Durr A, Deleuze JF, Tazir M, Desteé A, Lohmann E, Kabashi E, Singleton A, Corti O, Brice A (2016) Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. Am J Hum Genet 98: 500–513. https://doi.org/10.1016/j.ajhg.2016.01.014
  13. Riboldi GM, Di Fonzo AB (2019) GBA, Gaucher disease, and parkinson’s disease: From genetic to clinic to new therapeutic approaches. Cells 8(4): 364.
  14. Cisneros J, Belton TB, Shum GC, Molakal CG, Wong YC (2022) Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases. Trends Neurosci 45(4): 312–322.
  15. Ding WX, Yin XM (2012) Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7): 547–564.
  16. Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK (2021) Mitochondrial and Organellar Crosstalk in Parkinson’s Disease. ASN Neuro 13: 17590914211028364.
  17. Sharma O, Kaur Grewal A, Khan H, Gurjeet Singh T. (2024) Exploring the nexus of cGAS STING pathway in neurodegenerative terrain: A therapeutic odyssey. Int Immunopharmacol 142(Pt B): 113205. https://doi.org/10.1016/j.intimp.2024.113205
  18. Usenko TS, Nikolaev MA, Miliukhina IV, Bezrukova AI, Senkevich KA, Gomzyakova NA, Beltceva YA, Zalutskaya NM, Gracheva EV, Timofeeva AA, Petrova OA, Semenov AV, Lubimova NE, Totolyan AA, Pchelina SN (2020) Plasma cytokine profile in synucleinophaties with dementia. J Clin Neurosci 78: 323–326. https://doi.org/10.1016/j.jocn.2020.04.058
  19. Miliukhina IV, Usenko TS, Senkevich KA, Nikolaev MA, Timofeeva AA, Agapova EA, Semenov AV, Lubimova NE, Totolyan AA, Pchelina SN (2020) Plasma Cytokines Profile in Patients with Parkinson’s Disease Associated with Mutations in GBA Gene. Bull Exp Biol Med 168(4): 423–426. https://doi.org/10.1007/s10517-020-04723-x
  20. Dzamk N (2023) Cytokine activity in Parkinson’s disease. Neuronal Signal 7(4): NS20220063.
  21. Di Lazzaro G, Picca A, Boldrini S, Bove F, Marzetti E, Petracca M, Piano C, Bentivoglio AR, Calabresi P (2024) Differential profiles of serum cytokines in Parkinson’s disease according to disease duration. Neurobiol Dis 190: 106371. https://doi.org/10.1016/j.nbd.2023.106371
  22. Fu J, Chen S, Liu J, Yang J, Ou R, Zhang L, Chen X, Shang H (2023) Serum inflammatory cytokines levels and the correlation analyses in Parkinson’s disease. Front Cell Dev Biol 11: 1104393. https://doi.org/10.3389/fcell.2023.1104393
  23. Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11(6): e10248. https://doi.org/10.15252/emmm.201810248
  24. Hinkle JT, Patel J, Panicker N, Karuppagounder SS, Biswas D, Belingon B, Chen R, Brahmachari S, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM (2022) STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc Natl Acad Sci U S A 119(15): e2118819119. https://doi.org/10.1073/pnas.2118819119
  25. Si ZZ, Zou CJ, Mei X, Li XF, Luo H, Shen Y, Hu J, Li XX, Wu L, Liu Y (2023) Targeting neuroinflammation in Alzheimer’s disease: From mechanisms to clinical applications. Neural Regen Res 18(4): 708-715.
  26. Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ (2019) Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567(7747): 262–266. https://doi.org/10.1038/s41586-019-1006-9
  27. Wu S, Wang B, Li H, Wang H, Du S, Huang X, Fan Y, Gao Y, Gu L, Huang Q, Chen J, Zhang X, Huang Y, Ma X (2024) Targeting STING elicits GSDMD-dependent pyroptosis and boosts anti-tumor immunity in renal cell carcinoma. Oncogene 43(20): 1534–1548. https://doi.org/10.1038/s41388-024-03013-4
  28. Zhang X, Wu J, Liu Q, Li X, Li S, Chen J, Hong Z, Wu X, Zhao Y, Ren J (2020) mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion. Cell Death Dis 11(12): 1050. https://doi.org/10.1038/s41419-020-03239-6
  29. Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, Ilyukha V, Sorokin M, Buzdin A, Fitzgerald KA, Poltorak A (2019) Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ 26(2): 332–347. https://doi.org/10.1038/s41418-018-0122-7
  30. Tang CHA, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, Hu CCA (2016) Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76(8): 2137–2152. https://doi.org/10.1158/0008-5472.CAN-15-1885
  31. Jin L, Yu B, Wang H, Shi L, Yang J, Wu L, Gao C, Pan H, Han F, Lin W, Lai EY, Wang YF, Yang Y (2023) STING promotes ferroptosis through NCOA4-dependent ferritinophagy in acute kidney injury. Free Radic Biol Med 208: 348–360. https://doi.org/10.1016/j.freeradbiomed.2023.08.025
  32. Ma C, Liu Y, Li S, Ma C, Huang J, Wen S, Yang S, Wang B (2023) Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson’s disease. CNS Neurosci Ther 29(7): 2018–2035. https://doi.org/10.1111/cns.14157
  33. Yang K, Tang Z, Xing C, Yan N (2024) STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 112(4): 539–557.
  34. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner KP, Ludwig J, Hornung V (2013) CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454): 380–384. https://doi.org/10.1038/nature12306
  35. Kim J, Kim HS, Chung JH (2023) Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med 55(3): 510–519.
  36. Shen S, Rui Y, Wang Y, Su J, Yu XF (2023) SARS-CoV-2, HIV, and HPV: Convergent evolution of selective regulation of cGAS–STING signaling. J Med Virol 95(1): e28220.
  37. Lam E, Stein S, Falck-Pedersen E (2014) Adenovirus Detection by the cGAS/STING/TBK1 DNA Sensing Cascade. J Virol 88(2): 974–981. https://doi.org/10.1128/jvi.02702-13
  38. Rasmussen SB, Horan KA, Holm CK, Stranks AJ, Mettenleiter TC, Simon AK, Jensen SB, Rixon FJ, He B, Paludan SR (2011) Activation of Autophagy by α-Herpesviruses in Myeloid Cells Is Mediated by Cytoplasmic Viral DNA through a Mechanism Dependent on Stimulator of IFN Genes. J Immunol 187(10): 5268–5276. https://doi.org/10.4049/jimmunol.1100949
  39. Isaacs A, Lindenvann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci S147(927): 258-267.
  40. Yoneyama M, Shara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T (1998) Direct triggering of the type I interferon system by virus infection: Activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 17(4): 1087–1095. https://doi.org/10.1093/emboj/17.4.1087
  41. Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, Taniguchi T (1988) Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J 7(11): 3397–3405. https://doi.org/10.1002/j.1460-2075.1988.tb03213.x
  42. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5): 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
  43. Pomerantz JL (1999) NF-kappa B activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 18(23): 6694–6704. https://doi.org/10.1093/emboj/18.23.6694
  44. Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D (2022) Multifaceted functions of STING in human health and disease: From molecular mechanism to targeted strategy. Signal Transduct Target Ther 7(1): 394.
  45. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type i interferon-dependent innate immunity. Nature 461(7265): 788–792. https://doi.org/10.1038/nature08476
  46. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213): 674–678. https://doi.org/10.1038/nature07317
  47. Zhang C, Shang G, Gui X, Zhang X, Bai X-Chen, Chen ZJ (2019) Structural basis of STING binding with and phosphorylation by TBK1. Nature 567(7748): 394–398. https://doi.org/10.1038/s41586-019-1000-2
  48. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB (2008) The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity 29(4): 538–550. https://doi.org/10.1016/j.immuni.2008.09.003
  49. Hussain B, Xie Y, Jabeen U, Lu D, Yang B, Wu C, Shang G (2022) Activation of STING Based on Its Structural Features. Front Immunol 13: 808607.
  50. Shang G, Zhang C, Chen ZJ, Bai X -Chen, Zhang X (2019) Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature 567(7748): 389–393. https://doi.org/10.1038/s41586-019-0998-5
  51. Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM (2014) Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res 42(13): 8243–8257. https://doi.org/10.1093/nar/gku569
  52. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (1979) 339(6121): 786–791. https://doi.org/10.1126/science.1232458
  53. Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ (2019) Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci U S A 116(24): 11946–11955. https://doi.org/10.1073/pnas.1905013116
  54. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X (2019) STING: A master regulator in the cancer-immunity cycle. Mol Cancer 18(1): 152.
  55. Ergun SL, Fernandez D, Weiss TM, Li L (2019) STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition. Cell 178(2): 290–301.e10. https://doi.org/10.1016/j.cell.2019.05.036
  56. Luo WW, Li S, Li C, Lian H, Yang Q, Zhong B, Shu HB (2016) iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol 17(9): 1057–1066. https://doi.org/10.1038/ni.3510
  57. Li T, Chen ZJ (2018) The cGAS-cGAMP-STI NG pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215(5): 1287–1299.
  58. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17(10): 1142–1149.
  59. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, Liu M, Lei Y, Gao X, Fu X, Zhu F, Liu Y, Laganowsky A, Zheng X, Ji JY, West AP, Watson RO, Li P (2019) A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature 569(7758): 718–722. https://doi.org/10.1038/s41586-019-1228-x
  60. Tao J, Zhou X, Jiang Z (2016) cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life 68(11): 858–870.
  61. Dhillon B, Aleithan F, Abdul-Sater Z, Abdul-Sater AA (2019) The evolving role of TRAFs in mediating inflammatory responses. Front Immunol 10: 104.
  62. Chen X, Chen Y (2019) Ubiquitination of cGAS by TRAF6 regulates anti-DNA viral innate immune responses. Biochem Biophys Res Commun 514(3): 659–664. https://doi.org/10.1016/j.bbrc.2019.05.022
  63. Su J, Rui Y, Lou M, Yin L, Xiong H, Zhou Z, Shen S, Chen T, Zhang Z, Zhao N, Zhang W, Cai Y, Markham R, Zheng S, Xu R, Wei W, Yu XF (2019) HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS–STING-mediated NF-κB signalling. Nat Microbiol 4(12): 2552–2564. https://doi.org/10.1038/s41564-019-0585-4
  64. Zhang L, Wei X, Wang Z, Liu P, Hou Y, Xu Y, Su H, Koci MD, Yin H, Zhang C (2023) NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep 42(3): 112185. https://doi.org/10.1016/j.celrep.2023.112185
  65. Zhang Y, Zou M, Wu H, Zhu J, Jin T (2024) The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024 202: 106710. https://doi.org/10.1016/j.nbd.2024.106710.
  66. Huang X, Yao Y, Hou X, Wei L, Rao Y, Su Y, Zheng G, Ruan XZ, Li D, Chen Y (2022) Macrophage SCAP Contributes to Metaflammation and Lean NAFLD by Activating STING–NF-κB Signaling Pathway. CMGH 14(1): 1–26. https://doi.org/10.1016/j.jcmgh.2022.03.006
  67. Choudhuri S, Chowdhury IH, Garg NJ (2021) Mitochondrial Regulation of Macrophage Response Against Pathogens. Front Immunol 11: 622602.
  68. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: Тhe balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20: 175–193.
  69. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, Van Delft MF, Bedoui S, Lessene G, Ritchie ME, Huang DCS, Kile BT (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type i IFN production. Cell 159(7): 1549–1562. https://doi.org/10.1016/j.cell.2014.11.036
  70. Rongvaux A, Jackson R, Harman CCD, Li T, West AP, De Zoete MR, Wu Y, Yordy B, Lakhani SA, Kuan CY, Taniguchi T, Shadel GS, Chen ZJ, Iwasaki A, Flavell RA (2014) Apoptotic caspases prevent the induction of type i interferons by mitochondrial DNA. Cell 159(7): 1563–1577. https://doi.org/10.1016/j.cell.2014.11.037
  71. Elmore S (2007) Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 35(4): 495–516.
  72. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4): 526-539.
  73. Ning X, Wang Y, Jing M, Sha M, Lv M, Gao P, Zhang R, Huang X, Feng JM, Jiang Z (2019) Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Mol Cell 74(1): 19–31.e7. https://doi.org/10.1016/j.molcel.2019.02.013
  74. Kato Y, Park JH, Takamatsu H, Konaka H, Aoki W, Aburaya S, Ueda M, Nishide M, Koyama S, Hayama Y, Kinehara Y, Hirano T, Shima Y, Narazaki M, Kumanogoh A (2018) Apoptosis-derived membrane vesicles drive the cGAS–STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis 77(10): 1507–1515. https://doi.org/10.1136/annrheumdis-2018-212988
  75. Fehr EM, Spoerl S, Heyder P, Herrmann M, Bekeredjian-Ding I, Blank N, Lorenz HM, Schiller M (2013) Apoptotic-cell-derived membrane vesicles induce an alternative maturation of human dendritic cells which is disturbed in SLE. J Autoimmun 40: 86–95. https://doi.org/10.1016/j.jaut.2012.08.003
  76. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381): 278–286.
  77. Man SM, Karki R, Kanneganti TD (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1): 61–75.
  78. Broz P, Dixit VM (2016) Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7): 407–420.
  79. Guo H, Callaway JB, Ting JPY (2015) Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med 21(7): 677–687.
  80. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12): 1285–1298. https://doi.org/10.1038/cr.2015.139
  81. Webster SJ, Brode S, Ellis L, Fitzmaurice TJ, Elder MJ, Gekara NO, Tourlomousis P, Bryant C, Clare S, Chee R, Gaston HJS, Goodall JC (2017) Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. PLoS Pathog 13(6): e1006383. https://doi.org/10.1371/journal.ppat.1006383
  82. Swanson K V., Junkins RD, Kurkjian CJ, Holley-Guthrie E, Pendse AA, Morabiti R El, Petrucelli A, Barber GN, Benedict CA, Ting JPY (2017) A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 214(12): 3611–3626. https://doi.org/10.1084/jem.20171749
  83. Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z (2025) Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 264: 110217.
  84. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1): 55–65. https://doi.org/10.1038/ncb2883
  85. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534): 311-320.
  86. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1): 105–121. https://doi.org/10.1038/cr.2013.171
  87. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1-2): 213–227. https://doi.org/10.1016/j.cell.2011.11.031
  88. Cho YS (2018) The role of necroptosis in the treatment of diseases. BMB Rep 51(5): 219–224.
  89. Brault M, Olsen TM, Martinez J, Stetson DB, Oberst A (2018) Intracellular Nucleic Acid Sensing Triggers Necroptosis through Synergistic Type I IFN and TNF Signaling. J Immunol 200(8): 2748-2756. https://doi.org/10.4049/jimmunol.1701492
  90. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR (2012) Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149(5): 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
  91. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66: 89-100.
  92. Li J, Cao F, Yin H liang, Huang Z jian, Lin Z tao, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2): 88.
  93. Li C, Liu J, Hou W, Kang R, Tang D (2021) STING1 Promotes Ferroptosis Through MFN1/2-Dependent Mitochondrial Fusion. Front Cell Dev Biol 9: 698679. https://doi.org/10.3389/fcell.2021.698679
  94. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 9(6): 349–364.
  95. Choi AMK, Ryter SW, Levine B (2013) Autophagy in Human Health and Disease. New Engl J Med 368(7): 651–662. https://doi.org/10.1056/nejmra1205406
  96. Pyo JO, Nah J, Jung YK (2012) Molecules and their functions in autophagy. Exp Mol Med 44(2): 73–80. https://doi.org/10.3858/emm.2012.44.2.029
  97. Antonia RJ, Castillo J, Herring LE, Serafin DS, Liu P, Graves LM, Baldwin AS, Hagan RS (2019) TBK1 Limits mTORC1 by Promoting Phosphorylation of Raptor Ser877. Sci Rep 9(1): 13470. https://doi.org/10.1038/s41598-019-49707-8
  98. Bodur C, Kazyken D, Huang K, Ekim Ustunel B, Siroky KA, Tooley AS, Gonzalez IE, Foley DH, Acosta‐Jaquez HA, Barnes TM, Steinl GK, Cho K, Lumeng CN, Riddle SM, Myers MG, Fingar DC (2018) The IKK‐related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO J 37(1): 19–38. https://doi.org/10.15252/embj.201696164
  99. Kumar S, Gu Y, Abudu YP, Bruun JA, Jain A, Farzam F, Mudd M, Anonsen JH, Rusten TE, Kasof G, Ktistakis N, Lidke KA, Johansen T, Deretic V (2019) Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Dev Cell 49(1): 130–144.e6. https://doi.org/10.1016/j.devcel.2019.01.027
  100. Zhao P, Wong K in, Sun X, Reilly SM, Uhm M, Liao Z, Skorobogatko Y, Saltiel AR (2018) TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell 172(4): 731–743.e12. https://doi.org/10.1016/j.cell.2018.01.007
  101. Prabakaran T, Bodda C, Krapp C, Zhang B, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK, Nyengaard JR, Thompson CB, Lebbink RJ, Sen GC, van Loo G, Nielsen R, Komatsu M, Nejsum LN, Jakobsen MR, Gyrd‐Hansen M, Paludan SR (2018) Attenuation of c GAS‐STING signaling is mediated by a p62/ SQSTM 1‐dependent autophagy pathway activated by TBK1. EMBO J 37(8): e97858. https://doi.org/10.15252/embj.201797858
  102. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106(49): 20842–20846. https://doi.org/10.1073/pnas.0911267106
  103. Fischer TD, Wang C, Padman BS, Lazarou M, Youle RJ (2020) STING induces LC3B lipidation onto single-membrane vesicles via the V-ATPase and ATG16L1-WD40 domain. J Cell Biol 219(12): e202009128. https://doi.org/10.1083/JCB.202009128
  104. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh JM, Mayer U, Carding SR, Wileman T, Beale R, Florey O (2018) The WD 40 domain of ATG 16L1 is required for its non‐canonical role in lipidation of LC 3 at single membranes. EMBO J 37(4): e97840. https://doi.org/10.15252/embj.201797840
  105. Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, Heymann M, Goot FG Van Der, Turcatti G, Behrendt R, Ablasser A (2018) Targeting STING with covalent small-molecule inhibitors. Nature 559(7713): 269–273. https://doi.org/10.1038/s41586-018-0287-8
  106. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, Barber GN, Arai H, Taguchi T (2016) Activation of STING requires palmitoylation at the Golgi. Nat Commun 7: 11932. https://doi.org/10.1038/ncomms11932
  107. Decout A, Katz JD, Venkatraman S, Ablasser A (2021) The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21(9): 548–569.
  108. Hansen AL, Buchan GJ, Rühl M, Mukai K, Salvatore SR, Ogawa E, Andersen SD, Iversen MB, Thielke AL, Gunderstofte C, Motwani M, Møller CT, Jakobsen AS, Fitzgerald KA, Roos J, Lin R, Maier TJ, Goldbach-Mansky R, Miner CA, Qian W, Miner JJ, Rigby RE, Rehwinkel J, Jakobsen MR, Arai H, Taguchi T, Schopfer FJ, Olagnier D, Holm CK (2018) Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc Natl Acad Sci U S A 115(33): E7768–E7775. https://doi.org/10.1073/pnas.1806239115
  109. Li S, Hong Z, Wang Z, Li F, Mei J, Huang L, Lou X, Zhao S, Song L, Chen W, Wang Q, Liu H, Cai Y, Yu H, Xu H, Zeng G, Wang Q, Zhu J, Liu X, Tan N, Wang C (2018) The Cyclopeptide Astin C Specifically Inhibits the Innate Immune CDN Sensor STING. Cell Rep 25(12): 3405–3421.e7. https://doi.org/10.1016/j.celrep.2018.11.097
  110. Hong Z, Mei J, Li C, Bai G, Maimaiti M, Hu H, Yu W, Sun L, Zhang L, Cheng D, Liao Y, Li S, You Y, Sun H, Huang J, Liu X, Lieberman J, Wang C (2021) STING inhibitors target the cyclic dinucleotide binding pocket. Proc Natl Acad Sci U S A 118(24): e2105465118. https://doi.org/10.1073/pnas.2105465118
  111. Siu T, Altman MD, Baltus GA, Childers M, Ellis JM, Gunaydin H, Hatch H, Ho T, Jewell J, Lacey BM, Lesburg CA, Pan BS, Sauvagnat B, Schroeder GK, Xu S (2019) Discovery of a Novel cGAMP Competitive Ligand of the Inactive Form of STING. ACS Med Chem Lett 10(1): 92–97. https://doi.org/10.1021/acsmedchemlett.8b00466
  112. Corrales L, McWhirter SM, Dubensky TW, Gajewski TF (2016) The host STING pathway at the interface of cancer and immunity. J Clini Invest 126(7): 2404–2411.
  113. Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud A-L, Cambier JC, Lenz LL (2011) MPYS Is Required for IFN Response Factor 3 Activation and Type I IFN Production in the Response of Cultured Phagocytes to Bacterial Second Messengers Cyclic-di-AMP and Cyclic-di-GMP. J Immunol 187(5): 2595–2601. https://doi.org/10.4049/jimmunol.1100088
  114. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, Tran JL, Moore P, Lehmann S, Eberl HC, Muelbaier M, Schneck JL, Clemens J, Adam M, Mehlmann J, Romano J, Morales A, Kang J, Leister L, Graybill TL, Charnley AK, Ye G, Nevins N, Behnia K, Wolf AI, Kasparcova V, Nurse K, Wang L, Li Y, Klein M, Hopson CB, Guss J, Bantscheff M, Bergamini G, Reilly MA, Lian Y, Duffy KJ, Adams J, Foley KP, Gough PJ, Marquis RW, Smothers J, Hoos A, Bertin J (2018) Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564(7736): 439–443. https://doi.org/10.1038/s41586-018-0705-y
  115. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VAK, Monks B, Jin T, Xiao TS, Vogel SN, Vance RE, Fitzgerald KA (2013) Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. J Immunol 190(10): 5216–5225. https://doi.org/10.4049/jimmunol.1300097
  116. Huang Y, Liu B, Sinha SC, Amin S, Gan L (2023) Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol Neurodegener 18(1):79
  117. Xie X, Ma G, Li X, Zhao J, Zhao Z, Zeng J (2023) Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice. Nat Aging 3(2): 202–212. https://doi.org/10.1038/s43587-022-00337-2
  118. Sharma M, Rajendrarao S, Shahani N, Ramírez-Jarquín UN, Subramaniam S (2020) Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proc Natl Acad Sci U S A 117(27): 15989–15999. https://doi.org/10.1073/pnas.2002144117
  119. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, Balka KR, Calleja DJ, Moghaddas F, Ni E, McLean CA, Samson AL, Tyebji S, Tonkin CJ, Bye CR, Turner BJ, Pepin G, Gantier MP, Rogers KL, McArthur K, Crouch PJ, Masters SL (2020) TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 183(3): 636–649.e18. https://doi.org/10.1016/j.cell.2020.09.020
  120. Zamiri K, Kesari S, Paul K, Hwang SH, Hammock B, Kaczor-Urbanowicz KE, Urbanowicz A, Gao L, Whitelegge J, Fiala M (2023) Therapy of autoimmune inflammation in sporadic amyotrophic lateral sclerosis: Dimethyl fumarate and H-151 downregulate inflammatory cytokines in the cGAS-STING pathway. FASEB J 37(8): e23068. https://doi.org/10.1096/fj.202300573R
  121. Chen K, Lai C, Su Y, Bao WD, Yang LN, Xu PP, Zhu LQ (2022) cGAS-STING-mediated IFN-I Response in Host Defense and Neuroinflammatory Diseases. Curr Neuropharmacol 20(2): 362-371. https://doi.org/10.2174/1570159X19666210924110144
  122. Main BS, Zhang M, Brody KM, Ayton S, Frugier T, Steer D, Finkelstein D, Crack PJ, Taylor JM (2016) Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson’s disease. Glia 64(9): 1590–1604. https://doi.org/10.1002/glia.23028
  123. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561(7722): 258–262. https://doi.org/10.1038/s41586-018-0448-9
  124. Lee JJ, Andreazza S, Whitworth AJ (2020) The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models. Sci Rep 10(1): 2693. https://doi.org/10.1038/s41598-020-59647-3
  125. Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A (2024) Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 17: 4549–4574. https://doi.org/10.2147/JIR.S468609.
  126. Zhang Y, Shu L, Sun Q, Zhou X, Pan H, Guo J, Tang B (2018) Integrated genetic analysis of racial differences of common GBA variants in Parkinson’s disease: A meta-analysis. Front Mol Neurosci 11: 43.
  127. Chen Y, Gu X, Ou R, Zhang L, Hou Y, Liu K, Cao B, Wei Q, Li C, Song W, Zhao B, Wu Y, Cheng J, Shang H (2020) Evaluating the Role of SNCA, LRRK2, and GBA in Chinese Patients with Early-Onset Parkinson’s Disease. Movement Disord 35(11): 2046–2055. https://doi.org/10.1002/mds.28191
  128. Yu Z, Wang T, Xu J, Wang W, Wang G, Chen C, Zheng L, Pan L, Gong D, Li X, Qu H, Li F, Zhang B, Le W, Han F (2015) Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J Hum Genet 60(2): 85–90. https://doi.org/10.1038/jhg.2014.110
  129. Zhang Y, Sun QY, Zhao YW, Shu L, Guo JF, Xu Q, Yan XX, Tang BS (2015) Effect of GBA mutations on phenotype of Parkinson’s disease: A study on Chinese population and a meta-analysis. Parkinsons Dis 2015: 916971. https://doi.org/10.1155/2015/916971
  130. Smith L, Schapira AHV (2022) GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 11(8): 1261.
  131. Creese B, Bell E, Johar I, Francis P, Ballard C, Aarsland D (2018) Glucocerebrosidase mutations and neuropsychiatric phenotypes in Parkinson’s disease and Lewy body dementias: Review and meta-analyses. Am J Med Genet Part B: Neuropsychiatr Genet 177(2): 232–241.
  132. Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, Kuo SH, Mazzoni P, Pauciulo MW, Nichols WC, Gan-Or Z, Rouleau GA, Chung WK, Wolf P, Oliva P, Keutzer J, Marder K, Zhang X (2015) Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain 138: 2648–2658. https://doi.org/10.1093/brain/awv179
  133. Rocha EM, Smith GA, Park E, Cao H, Brown E, Hallett P, Isacson O (2015) Progressive decline of glucocerebrosidase in aging and Parkinson’s disease. Ann Clin Transl Neurol 2(4): 433–438. https://doi.org/10.1002/ACN3.177
  134. Pchelina S, Emelyanov A, Baydakova G, Andoskin P, Senkevich K, Nikolaev M, Miliukhina I, Yakimovskii A, Timofeeva A, Fedotova E, Abramycheva N, Usenko T, Kulabukhova D, Lavrinova A, Kopytova A, Garaeva L, Nuzhnyi E, Illarioshkin S, Zakharova E (2017) Oligomeric alpha-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease. Neurosci Lett 636: 70–76. https://doi.org/10.1016/j.neulet.2016.10.039
  135. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1): 37–52. https://doi.org/10.1016/j.cell.2011.06.001
  136. Fredriksen K, Aivazidis S, Sharma K, Burbidge KJ, Pitcairn C, Zunke F, Gelyana E, Mazzulli JR (2021) Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo. Proc Natl Acad Sci U S A 118(50): e2108489118. https://doi.org/10.1073/pnas.2108489118
  137. Toffoli M, Smith L, Schapira AHV (2020) The biochemical basis of interactions between Glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J Neurochem 154(1): 11–24.
  138. Al-Azzawi ZAM, Arfaie S, Gan-Or Z (2022) GBA1 and The Immune System: A Potential Role in Parkinson’s Disease? J Parkinsons Dis 12(Suppl 1): S53–S64.
  139. Wang R, Sun H, Cao Y, Zhang Z, Chen Y, Wang X, Liu L, Wu J, Xu H, Wu D, Mu C, Hao Z, Qin S, Ren H, Han J, Fang M, Wang G (2024) Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice. Sci Signal 17(829): eadk8249. https://doi.org/10.1126/scisignal.adk8249
  140. Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S (2023) Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 24(15): 12164. https://doi.org/10.3390/ijms241512164
  141. Usenko T, Bezrukova A, Basharova K, Panteleeva A, Nikolaev M, Kopytova A, Miliukhina I, Emelyanov A, Zakharova E, Pchelina S (2021) Comparative transcriptome analysis in monocyte-derived macrophages of asymptomatic gba mutation carriers and patients with gba-associated parkinson’s disease. Genes (Basel) 12(10): 1545. https://doi.org/10.3390/genes12101545
  142. Kim YC, Guan KL (2015) MTOR: A pharmacologic target for autophagy regulation. J Clin Investigat 125(1): 25–23.
  143. Rabanal-Ruiz Y, Otten EG, Korolchuk VI (2017) MTORC1 as the main gateway to autophagy. Essays Biochem 61(6): 565–584.
  144. Srikanth MP, Jones JW, Kane M, Awad O, Park TS, Zambidis ET, Feldman RA (2021) Elevated glucosylsphingosine in Gaucher disease induced pluripotent stem cell neurons deregulates lysosomal compartment through mammalian target of rapamycin complex 1. Stem Cells Transl Med 10(7): 1081–1094. https://doi.org/10.1002/sctm.20-0386
  145. Kopytova AE, Rychkov GN, Nikolaev MA, Baydakova GV., Cheblokov AA, Senkevich KA, Bogdanova DA, Bolshakova OI, Miliukhina IV., Bezrukikh VA, Salogub GN, Sarantseva SV., Usenko TC, Zakharova EY, Emelyanov AK, Pchelina SN (2021) Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinson Relat Disord 84: 112–121. https://doi.org/10.1016/j.parkreldis.2021.02.003
  146. Bogetofte H, Ryan BJ, Jensen P, Schmidt SI, Vergoossen DLE, Barnkob MB, Kiani LN, Chughtai U, Heon-Roberts R, Caiazza MC, McGuinness W, Márquez-Gómez R, Vowles J, Bunn FS, Brandes J, Kilfeather P, Connor JP, Fernandes HJR, Caffrey TM, Meyer M, Cowley SA, Larsen MR, Wade-Martins R (2023) Post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson’s disease GBA-N370S dopamine neurons. Cell Rep 42(3): 112180. https://doi.org/10.1016/j.celrep.2023.112180
  147. Pupyshev AB, Tenditnik MV, Ovsyukova MV, Akopyan AA, Dubrovina NI, Tikhonova MA (2021) Restoration of Parkinson’s Disease-Like Deficits by Activating Autophagy through mTOR-Dependent and mTOR-Independent Mechanisms in Pharmacological and Transgenic Models of Parkinson’s Disease in Mice. Bull Exp Biol Med 171(4): 425–430. https://doi.org/10.1007/s10517-021-05242-z
  148. Mubariz F, Saadin A, Lingenfelter N, Sarkar C, Banerjee A, Lipinski MM, Awad O (2023) Deregulation of mTORC1-TFEB axis in human iPSC model of GBA1-associated Parkinson’s disease. Front Neurosci 17: 1152503. https://doi.org/10.3389/fnins.2023.1152503
  149. Безрукова АИ, Башарова КС, Милюхина ИВ, Пчелина СН, Усенко ТС (2024) Первичная культура макрофагов периферической̆ крови как модель для изучения процессов аутофагии и разработки таргетной терапии для идиопатической и моногенной форм болезни Паркинсона. Матер VI Нац конгр регенерат мед 13–15 ноября 2024 г. Санкт-Петербург. 110–112. [Bezrukova AI, Basharova KS, Milyukhina IV, Pchelina SN, Usenko TS (2024) Primary culture of peripheral blood macrophages as a model for studying autophagy and developing targeted therapy for idiopathic and monogenic forms of Parkinson’s disease. Proc VI National Congr Regener Med November 13–15, 2024. Saint Petersburg. 110–112. (In Russ)].
  150. Bezrukova AI, Basharova KS, Baydakova GV, Zakharova EY, N Pchelina S, Usenko TS (2024) Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of MTOR Protein Kinase – Assessment of the Prospects of Parkinson's Disease Therapy. Biochemistry (Mosc) 89(7): 1300–1312. https://doi.org/10.1134/S0006297924070113
  151. Galvagnion C (2017) The Role of Lipids Interacting with α-Synuclein in the Pathogenesis of Parkinson’s Disease. J ParkinsonDis 7(3): 433–450.
  152. Battis K, Xiang W, Winkler J (2023) The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson’s Disease. Int J Mol Sci 24(17): 13270.
  153. Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, Di Monte DA (2022) Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain 145(3): 1038–1051. https://doi.org/10.1093/brain/awab371
  154. Navarro-Romero A, Fernandez-Gonzalez I, Riera J, Montpeyo M, Albert-Bayo M, Lopez-Royo T, Castillo-Sanchez P, Carnicer-Caceres C, Arranz-Amo JA, Castillo-Ribelles L, Pradas E, Casas J, Vila M, Martinez-Vicente M (2022) Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinsons Dis 8(1): 126. https://doi.org/10.1038/s41531-022-00397-6
  155. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: Proximal triggers, distal effectors, and final steps. Apoptosis 14(4): 478–500.
  156. Пчелина СН, Усенко ТС, Боганькова НА, Якимовский АФ, Емельянов АК, Вавилова ТВ, Шварцман АЛ (2012) Спонтанный апоптоз лимфоцитов периферической крови у пациентов с болезнью Паркинсона. Мед иммунол 14(1–2): 149–152. [Pchelina SN, Usenko TS, Bogankova NA, Yakimovsky AF, Emelyanov AK, Vavilova TV, Schwartzman AL (2012) Spontaneous apoptosis of peripheral blood lymphocytes in patients with Parkinson’s disease. Med Immunol 14(1–2): 149–152. (In Russ). https://doi.org/10.15789/1563-0625-2012-1-2-149-152
  157. Su T, Zhang Y, Valerie K, Wang XY, Lin S, Zhu G (2019) STING activation in cancer immunotherapy. Theranostics 9(25): 7759–7771.
  158. Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BCK, Song J, Lu J, Cheung KH, Li M (2019) Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int J Mol Sci 20(3): 728.
  159. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed Res Int 2014: 761264.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Domain structure of the STING protein. N-terminal transmembrane domain (TMD) with four transmembrane helices (residues 1–138), cytosolic ligand binding domain (LBD, residues 139–336) and C-terminal domain (CTT, residues 337–379).

Baixar (101KB)
3. Fig. 2. The mechanism of STING activation and its effect on the transcription of proinflammatory molecules. The release of mitochondrial DNA (mtDNA) into the cytoplasm due to mitochondrial damage serves as a signal for the activation of cGAS (cyclic GMP-AMP synthetase), which recognizes double-stranded DNA (mitochondrial, viral or bacterial). Activated cGAS synthesizes 2′,3′-cGAMP, a second messenger that binds to STING on the endoplasmic reticulum membrane. Binding of cGAMP causes conformational changes and oligomerization of STING, after which it is translocated to the Golgi apparatus. Here, STING activates TBK1 kinase, which phosphorylates STING and interferon regulatory factor 3 (IRF3). Phosphorylated IRF3 dimerizes and translocates to the nucleus, activating the synthesis of type I interferons. In parallel, STING stimulates NF-κB, enhancing the production of proinflammatory cytokines (TNF-α, IL-6) necessary for the immune response.

Baixar (164KB)
4. Fig. 3. Regulation of autophagy processes by STING. STING activation leads to endoplasmic reticulum stress, subsequent mTOR inactivation and induction of canonical autophagy via the ULK1 complex. Activated STING promotes the recruitment of ATG16L1 to membrane structures, which ensures LC3 lipidation, which is important for the formation of autophagosomes. Alternatively, LC3 lipidation can occur in the endoplasmic reticulum and Golgi compartments with the participation of the WIPI2 and Atg5 complex, which leads to the induction of non-canonical autophagy. STING is involved in xenophagy induced by cytosolic pathogenic DNA, which is important for the elimination of viruses and bacteria. This process is triggered in response to the presence of cytosolic pathogenic DNA and is an important mechanism of cellular defense against infections.

Baixar (191KB)
5. Fig. 4. Effect of STING H-151 and mTOR Torin 1 inhibition on primary culture of peripheral blood macrophages and SH-SY5Y neuroblastoma cell line. Combined use of STING H-151 and mTOR Torin 1 inhibitors resulted in decreased levels of neurotoxic forms of alpha-synuclein (oligomeric, phosphorylated Ser129) against the background of decreased concentration of the substrate of the lysosomal enzyme glucocerebrosidase (GCase) – hexosylsphingosine (HexSph), which belongs to the sphingolipid class. The efficiency of STING H-151 inhibition was assessed by the level of phosphorylated form TBK1, and mTOR Torin 1 inhibition – by the levels of phosphorylated forms of mTOR and RPS6.

Baixar (363KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025