Determination conditions of electrochemical removal phosphate ions from wash solutions obtained during processing of alunites from the Zaglig deposit

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This article studies the process of electrochemical removal of phosphate ions from wash solutions formed in aluminum production. A distinctive feature of these solutions is the presence, in addition to phosphate ions (up to 1.7 g/l), of a significant amount of aluminum up to 47 g/l in the form of [Al(OH)4]. The effect of the operating parameters (initial pH, process time (τ), initial concentration of phosphate ions, distance between electrodes and current density) of the electrocoagulation process using aluminum electrodes on the efficiency of phosphate ion removal was studied. It was shown that as a result of electrochemical dissolution of the aluminum anode and hydrolysis of the Al3+ ion, an amorphous precipitate of aluminum hydroxide is formed in the solution. It was found that electrolysis of the solution with an Al anode at J = 10 mA/sm2 leads to the removal of phosphate ions by over 90%. The electrocoagulation product was characterized by SEM/EDS analysis. The influence of possible impurities (SO42–, PO43–, F, Cl, VO43–) in washing solutions obtained during alunite processing on the degree of phosphate ion removal was estimated.

 

作者简介

A. Geidarov

Institute of Catalysis and Inorganic Chemistry named after academic M. Nagiyev

编辑信件的主要联系方式.
Email: arif.heyderov.54@mail.ru
Baku

P. Babaeva

Institute of Catalysis and Inorganic Chemistry named after academic M. Nagiyev

Email: arif.heyderov.54@mail.ru
Baku

D. Mehmet

Firat University

Email: arif.heyderov.54@mail.ru
Elazig, Turkey

G. Alyshanly

Institute of Catalysis and Inorganic Chemistry named after academic M. Nagiyev

Email: arif.heyderov.54@mail.ru
Baku

S. Jafarova

Institute of Catalysis and Inorganic Chemistry named after academic M. Nagiyev

Email: arif.heyderov.54@mail.ru
Baku

参考

  1. Шахтахтинский, Г.Б. Попутное извлечение пятиокиси ванадия при комплексной переработке алунитов / Г.Б. Шахтахтинский, С.М. Гусейнзаде, Х.С. Халилов. - Баку, 1974. 91 с.
  2. Пат. SU 1814273. A1, COIF7/06. Способ переработки алунита / Равдоникас И.В., Насыров Г.З., Ровшанов В.М., Кривцова Е.Г. 1996.
  3. Grubbs, D.K. The geology, mineralogy and clarification properties of red and yellow Jamaican bauxites / D.K. Grubbs, S.K. Libby, I.R. Rodenburg, K.A. Weters // Proc. Bauxtie Simposium. J. Geolog. Soc. Jamaica. 1980. NoIV. P.176-186.
  4. Henry, K.E. The dissolution of phosphorus from Jamaican bauxites under low temperature Bayer conditions / K.E. Henry, M.D. Coley, A.M. Greenaway // Hydrometallurgy. 2018. V.179. P.132-140.
  5. Geidarov, A.A. Adsorption of phosphate ions from aluminate solutions on an Fe-AC nanocomposite / A.A. Geidarov, P.G. Babaeva, A.A. Gulieva, Z.A. Dzhabbarova, G.I. Alyshanly // Russian Metallurgy (Metally). 2023. No7. P.899-904.
  6. Clark, T. Phosphorus removal by chemical precipitation in a biological acrated filter / T. Clark, T. Stephenson, P.A. Pearse // Water Res. 1997. V.31. P.2557-2563.
  7. Ruixia, L. Adsorption of fluoride, phosphate, and arsenate ions on a new type ion exchange fiber / L. Ruixia, Gr. Jinlong, T.J. Hongrias // J. Colloid Interface Sci. 2002. V.248. P.268-274.
  8. Stensel, H.D. Principles of biological phosphorus removal / H.D. Stensel ; ed. R.I. Sedlak ; Phosphorus and nitrogen removal from municipal wastewater - Principles and practice ; second ed. H.K. Lewis. - London, 1991. 141 p.
  9. Моreno, Е.С. Crystal growth of calcium appetites from dilute solutions / Е.С. Моreno, K. Varughese // J. Cryst. Growth. 1981. V.53. P.20-30.
  10. Boisvert, J.P. Phospate adsorption in flocculation processes of aluminium sulphate and polyaluminium-silicate-sulphate / J.P. Boisvert, T.C. To, A. Berrak, C. Joliicoeur // Water Res. 1997. V.31. P.1939-1946.
  11. Fytianos, K. Modelling of phosphorus removal from aqueous and wastewater samples using ferric ion / K. Fytianos, E. Voudrias, N. Raikos // Environ. Pollut. 1948. V.101. P.123-130.
  12. Yeoman, S. The removal of phosphorus during wastewater treatment : a review / S. Yeoman, T. Stephenson, J.N. Lester, R. Perry // Environ. Att. Pollut. 1998. V.49. P.183-233.
  13. Whittington, B. The chemistry of CaO and Ca(OH)2 relating to the Bayer process / B. Whittington // Hydrometallurgy. 1996. V.43. P.13-35.
  14. Meng Du. Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal : Exploration from synthesis to modification / Meng Du, Yueyan Zhang, Zeyi Wang, Mengran Lv, Aiqi Tang, Yang Yu, Xuan Qu, Zhiqiang Chen, Qinxue Wen, Ang Li // Chem. Eng. J. 2022. V.442. Pt.1. P.136-147.
  15. Irdemez, S. The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocaogulation using aluminum and iron plate electrodes/ S. Irdemez, N. Demircioglu, Y.S. Yildiz, Z. Bingül // Separ. Purific. Tech. 2006. V.52. P.218-223.
  16. Irdemez, S. The effect of pH removal of phosphate from water using aluminium electrodes by electrocagulation method El-Cezeri / S. Irdemez, Z. Bingül, S. Kul, F.E. Torun, N. Demircioglu // J. Sci. Eng. 2021. V.8(3). No1. P.1472-1479.
  17. Attour, A. Influence of operating parameters on phosphate removal from water by electrocagulation using aluminium electrodes / A. Attour, M. Tauati, M. Thili, M. Ben, F. Lapicque // Separ. Purific. Tech. 2014. V.123. P.124-129.
  18. Bektaş, M. Removal of phosphate from aqueous solutions by electro-coagulation / M. Bektaş, H. Inan, Akbulut, A. Dimoglo // J. Hazard. Mater. 2004. V.106 (A). P.101-105.
  19. Lacasa, E. Electrochemical phosphates removal using iron and aluminum electrodes / E. Lacasa, P. Canizares, C. Saez, F.J. Fernandez, M.A. Rodrigo // Chem. Eng. J. 2011. V.172. P.137-143.
  20. Рязанцев, А.А. Использование электрокоагуляции при очистке и деминерализации сточных вод предприятии по добыче переработке минерального сырья / А.А. Рязанцев, Д.А. Коновалова // Вест. Сиб. гос. ун-та путей сообщения. 2017. No4. Т.43. С.12-17.
  21. ГОСТ 18309-2014. Вода. Методы определения фосфорсодержащих веществ. Москва : Межгосударственный Стандарт. 2015. 25 c.
  22. Graça, N.S. Modeling the electrocoagulation process for the treatment of contaminated water / N.S. Graça, A.M. Ribeiro, A.E. Rodrigues // Chem. Eng. Sci. 2019. V.197. P.379-385.
  23. Duan, J. Coagulation by hydrolysing metal salts / J. Duan, J. Gregory // Adv. Colloid Interface Sci. 2003. V.100-102. No1. P.475-502.
  24. Jiang, D. Removal and recovery of phosphate from water by calcium-silicate composites-novel adsorbents made from waste glass and shells / D. Jiang, Y. Amano, M. Machida // Environ Sci. Pollut. Res. 2017. V.24. P.8210-8218.
  25. Georgantas, D.A. Orthophosphate and metaphosphate ion removal from aqueous solution using alum and aluminum hydroxide / D.A. Georgantas, H.P. Grigoropoulou // J. Colloid Interface Sci. 2007. V.315. Is.1. P.70-79.
  26. Sun, J. Removal of phosphorous wastewater by different morphological aluminia / J. Sun, A. Gao, X. Wang, X. Xu, J. Sang // Molecules. 2020. V.25. No13. Art.3092.
  27. Krishna, B.M. Electrochemical pretreatment of distillery wastewater using aluminium electrode / B.M. Krishna, U.N. Murthy, B.M. Kumar, K.S. Lokesh // J. Appl. Electrochem. 2010. V.40. P.663-673.
  28. Tanada, S. Removal of phosphate by aluminum oxide hydroxide / S. Tanada, M. Kabayama, N. Kawasaki, T. Sakiyama, Takeo [et al.] // J. Colloid Interface Sci. 2003. V.257. Is.1. P.135-140.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025