PRODUCTION OF W-Y2O3 POWDERS WITH SPHERICAL PARTICLES AND SUBMICRON INTERNAL STRUCTURE USING ELECTRIC ARC THERMAL PLASMA

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This paper presents the results of the study of the process of obtaining spheroidized powders of the W-Y2O3 system of 5–50 μm fraction, the particles of which are characterized by submicron grain size of tungsten and uniform distribution of yttrium oxide. The powders were obtained using an approach involving successive stages of plasma-chemical synthesis of nanopowders of the W-Y2O3 system, granulation of nanopowders by spray drying and plasma spheroidization of the obtained microgranules. The regularities of formation of composite nanopowders W-Y2O3 with yttrium oxide content in the range from 0.3 to 5.0 wt.% in the flow of nitrogen-hydrogen plasma have been established. The parameters and conditions of plasma-chemical synthesis have been determined, under which the complete transformation of initial reagents into target products (W and Y2O3) with uniform distribution of yttrium oxide in synthesized nanopowders is achieved. The conditions of preparation of stable suspensions based on nanopowders of W-Y2O3 system and the process of their spray drying, providing the formation of predominantly rounded nanopowder microgranules of fraction −60 microns with maximum yield and productivity have been determined. The influence of plasma treatment parameters on the degree of spheroidization, internal structure, bulk density and fluidity of microorganisms has been established, and the possible ranges of variation of these characteristics have been determined. It is proved that the uniformity of yttrium oxide distribution in powder materials is provided at all stages of obtaining spheroidized microparticles of W-Y2O3 system – from plasma-chemical synthesis of nanopowders to processing of microgranules in the flow of electric arc thermal plasma. The possibility of significant refining of treated microgranules by gas impurities (O, N, H, C) during plasma treatment is demonstrated.

作者简介

A. Samokhin

Baikov Institute of Metallurgy and Materials Science RAS

Email: email@example.com
Moscow, Russia

N. Alekseev

Baikov Institute of Metallurgy and Materials Science RAS

Email: email@example.com
Moscow, Russia

A. Dorofeev

Baikov Institute of Metallurgy and Materials Science RAS

Email: adorofeev@imet.ac.ru
Moscow, Russia

A. Fadeev

Baikov Institute of Metallurgy and Materials Science RAS

Email: email@example.com
Moscow, Russia

M. Sinaisky

Baikov Institute of Metallurgy and Materials Science RAS

Email: email@example.com
Moscow, Russia

Yu. Kalashnikov

Baikov Institute of Metallurgy and Materials Science RAS

Email: email@example.com
Moscow, Russia

参考

  1. Ren, C. An investigation of the microstructure and ductility of annealed cold-rolled tungsten / C. Ren, Z.Z. Fang, L. Xu, J.P. Ligda, J.D. Paramore, B.G. Butler // Acta Materialia. 2019. V.162. P.202–213.
  2. Hu, W. Microstructure refinement in W-Y2O3 alloys via an improved hydrothermal synthesis method and low temperature sintering / W. Hu, Z. Dong, Z. Ma, Y. Liu // Inorg. Chem. Front. 2020. V.7. P.659–666.
  3. Dong, Z. Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy / Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Yamauchi, H.R. Alamri, Z.A. Alothman, M.S.A. Hossain, Y. Liu // Int. J. Refract. Met. Hard Mater. 2017. V.69. P.266–272.
  4. Talignani, A. A review on additive manufacturing of refractory tungsten and tungsten alloys / A. Talignani, R. Seede, A. Whitt, S. Zheng, J. Ye, I. Karaman, M.M. Kirka, Y. Katoh, Y.M. Wang // Additive Manufacturing. 2022. V.58. Art.103009.
  5. Howard, L. Progress and challenges of additive manufacturing of tungsten and alloys as plasma-facing materials / L. Howard, G.D. Parker, Xiao-Ying Yu // Materials. 2024. V.17. Art.2104.
  6. You, J.H. Divertor of the European DEMO : Engineering and technologies for power exhaust / J.H. You, G. Mazzone, E. Visca, H. Greuner, M. Fursdon, Y. Addab, C. Bachmann, T. Barrett, U. Bonavolontà, B. Böswirth [et al.] // Fusion Eng. Des. 2022. V.175. Art.113010.
  7. Persianova, A.P. Hydrogen traps in tungsten : a review / A.P. Persianova, A.V. Golubeva // Physics of Metals and Metallography. 2024. V.125(3). P.278–306.
  8. Golubeva, A.V. Hydrogen retention in doped tungsten materials developed for fusion (review) / A.V. Golubeva, D.I. Cherkez // Problems of Atomic Sci. Tech. 2018. V.41(4). Р.26.
  9. Oya, M. Effect of periodic deuterium ion irradiation on deuterium retention and blistering in Tungsten / M. Oya, H.T. Lee, A. Hara, K. Ibano, M. Oyaidzu, T. Hayashi, Y. Ueda // Nuclear Mater. Energy. 2017. V.12. P.674–677.
  10. Fang, Z.Z. The effect of Ni doping on the mechanical behavior of tungsten / Z.Z. Fang, C. Ren, M. Simmons, P. Sun // Int. J. Refract. Met. Hard Mater. 2020. V.92. Art.105281.
  11. Li, K. Crack suppression via in-situ oxidation in additively manufactured W-Ta alloy / K. Li, G. Ma, L. Xing, Y. Wang, X. Huang // Mater. Lett. 2019. V.263. Art.127212.
  12. Qin, M. Preparation of intragranular-oxide-strengthened ultrafine-grained tungsten via low-temperature pressureless sintering / M. Qin, J. Yang, Z. Chen, P. Chen, S. Zhao, J. Cheng, P. Cao, B. Jia, G. Chen, L. Zhang, X. Qu // Mater. Sci. Eng. A. 2020. V.774. Art.138878.
  13. Xiao, F. Uniform nanosized oxide particles dispersion strengthened tungsten alloy fabricated involving hydrothermal method and hot isostatic pressing / F. Xiao, Q. Miao, S. Wei, T. Barriere, G. Cheng, S. Zuo, L. Xu // J. Alloys Compd. 2020. V.824. Art.153894.
  14. Hu, W. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering : microstructure refinement and second phase particles regulation / W. Hu, Z. Dong, L. Yu, Z. Ma, Y. Liu // J. Mater. Sci. Tech. 2020. V.36. P.84–90.
  15. Wang, K. Evolution of microstructure and texture in a warm-rolled yttria dispersion-strengthened tungsten plate during annealing in the temperature range between 1200 °C and 1350 °C / K. Wang, D. Ren, X. Zan, L. Luo, W. Pantleon, Y. Wu // J. Alloys Comp. 2021. V.883. Art.160767.
  16. Lin, J.-S. Microstructure and deuterium retention after ion irradiation of W-Lu2O3 composites / J.-S. Lin, L.-M. Luo, Q. Xu, X. Zhan [et al.] // J. Nucl. Mater. 2017. V.490. P.272–278.
  17. Dong, Z. Preparation of ultra-fine grain W-Y2O3 alloy by an improved wet chemical method and two-step spark plasma sintering / Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu // J. Alloy. Compd. 2017. V.695. P.2969–2973.
  18. Liu, N. Eliminating bimodal structures of W-Y2O3 composite nanopowders synthesized by wet chemical method via controlling reaction conditions / N. Liu, Z. Dong, Z. Ma, L. Yu, C. Li, C. Liu, Q. Guo, Y. Liu // J. Alloy. Compd. 2019. V.774. P.122–128.
  19. Shan Guo. Preparation of spherical WC-Co powder by spray granulation combined with radio frequency induction plasma spheroidization / Shan Guo, Zhenhua Hao, Rulong Ma [et al.] // Ceram. Intern. 2023. V.49(8). P.12372–12380.
  20. Samokhin, A. Production of spheroidized micropowders of W-Ni-Fe pseudo-alloy using plasma technology / A. Samokhin, N. Alekseev, A. Dorofeev, A. Fadeev, M. Sinaiskiy // Metals. 2024. V.14(9). Art.1043.
  21. Cabrol, E. Fabrication of stainless steel/alumina composite powders by spray granulation and plasma spheroidization / E. Cabrol, S. Cottrino, H. Si-Mohand, G. Fantozzi // Materials. 2025. V.18. Art.1872.
  22. Samokhin, A. Nanopowders production and micron-sized powders spheroidization in DC plasma reactors / A. Samokhin, N. Alekseev, M. Sinayskiy, A. Astashov, D. Kirpichev, A. Fadeev, Y. Tsvetkov, A. Kolesnikov // In the book : Powder Technology. Chapter 1. IntechOpen. 2018. P.4–20.
  23. Dorofeev, A.A. Investigation of nanopowder granulation in W-Ni-Fe systems using spray-drying approach / A.A. Dorofeev, A.V. Samokhin, A.A. Fadeev, N.V. Alekseev, M.A. Sinayskiy, I.S. Litvinova, I.D. Zavertyaev // Inorg. Mater. : Appl. Res. 2024. V.14(3). P.884–895.
  24. Samokhin, A. Spheroidization of iron-based powders in the plasma flow of an electric arc plasma torch and their application in selective laser melting / A.V. Samokhin, A.A. Fadeev, N.V. Alekseev, M.A. Sinaisky, V.Sh. Sufiyarov, E.V. Borisov, O.V. Korznikov, T.V. Fedina, G.S. Vodovozova, S.V. Baryshkov // Phys. Chem. Mater. Proces. 2019. V.4. P.12–20.
  25. Авт. свид. RU 2756327 C1. МПК B22 F9/04. Плазменная установка для сфероидизации металлических порошков в потоке термической плазмы / Самохин А.В., Фадеев А.А., Кирпичев Д.Е., Алексеев Н.В., Берестенко В.И., Асташов А.Г., Завертяев И.Д. – заявл. №2020134059 от 16.10.2020. Опубл. 29.09.2021. –

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025