Structure and properties of Ti-TiB2 coatings obtained by electric spark treatment of Ti6Al4V titanium alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Ti-TiB2 coatings were prepared by electric spark treatment with a non-localized electrode (NE) of a titanium substrate. Titanium granules and titanium diboride powder in various ratios were used for application. During the coating process, all samples monotonously gained weight. The average weight gain values for 10 minutes of treatment ranged from 1.6 to 3.8 mg/cm2, with a minimum at sample B9 and a maximum at B6. A study of the average thickness of the coatings obtained showed comparability with the cathode gain. There are no clear boundaries and longitudinal cracks between the deposited layer and the substrate. All coatings have an inhomogeneous structure, represented by a metal matrix with dark gray inclusions, which are particles of the initial titanium diboride. The surface roughness of all prepared coatings according to the Ra criterion was very close and ranged from 5.13 to 9.27 microns. The average values of the microhardness of the coatings varied in the range from 13.28 to 13.91 GPa, which is 3.4 to 4.3 times higher than the uncoated titanium alloy. The cyclic heat resistance test was carried out at a temperature of 900 °C for 100 hours and showed that the final weight gain of the samples ranged from 487.0 to 583.8 g/m2, which is lower than that of titanium alloy Ti6Al4V without coating (630.6 g/m2)
from 7 to 23%. The average values of the coatings’ wear intensity ranged from 1.26∙10–6 to 6.3∙10–6 mm3/Nm at 25 N and from 0.75∙10–6 to 3.6∙10–5 mm3/nm at 70 N.

About the authors

A. A. Burkov

Khabarovsk Federal Research Center Institute of materials science of the Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: Alex_btsr@mail.ru
Khabarovsk

A. Yu. Bytsura

Khabarovsk Federal Research Center Institute of materials science of the Far Eastern Branch of the Russian Academy of Sciences

Email: Alex_btsr@mail.ru
Khabarovsk

References

  1. Bhattacharya, A. Nano-scale microstructure damage by neutron irradiations in a novel Boron-11 enriched TiB2 ultra-high temperature ceramic / A. Bhattacharya [et al.] // Acta Materialia. 2019. V.165. P.26–39. https://doi.org/10.1016/j.actamat.2018.11.030
  2. Tan, D.W. Wear behavior and mechanism of TiB2-based ceramic inserts in high-speed cutting of Ti6Al4V alloy / D.W. Tan [et al.] // Ceram. Intern. 2020. V.46. №6. P.8135–8144. https://doi.org/10.1016/j.ceramint.2019.12.041
  3. Berger, M. Low stress TiB2 coatings with improved tribological properties / M. Berger [et al.] // Thin Solid Films. 2001. V.401. №1–2. P.179–186. https://doi.org/10.1016/S0040-6090(01)01481-X
  4. Kováčik, J. Electro spark deposition of TiB2 layers on Ti6Al4V alloy / J. Kováčik, P. Baksa, Š. Emmer // Acta Metallurgica Slovaca. 2016. V.22. №1. Р.52–59. https://doi.org/10.12776/ams.v22i1.628
  5. Treglio, J.R. Deposition of TiB2 at low temperature with low residual stress by a vacuum arc plasma source / J.R. Treglio, S. Trujillo, A.J. Perry // Surface Coat. Tech. 1993. V.61. №1–3. P.315–319. https://doi.org/10.1016/0257-8972(93)90245-J
  6. Elders, J. CO2-laser-induced chemical vapour deposition of TiB2 / J. Elders [et al.] // Surface Coat. Tech. 1991. V.45. №1–3. Р.105–113. https://doi.org/10.1016/0257-8972(91)90212-F
  7. Wu, B. Designing TiB2/Cr multilayer coatings on Ti6Al4V substrate for optimized wear resistance / B. Wu [et al.] // Surface Sci. Tech. 2024. V.2. №1. Р.1–18. https://doi.org/10.1007/s44251-024-00058-1
  8. Goshkoderya, M.E. Investigation of Ti/TiB2 system composite coatings sprayed by microplasma method / M.E. Goshkoderya, T.I. Bobkova, M.V. Staritsyn // J. Phys. : Conf. Ser. – IOP Publishing, 2022. V.2182. №1. Art.012073. https://doi.org/10.1088/1742-6596/2182/1/012073
  9. Wang, X. Microstructure evolution and hardening mechanism of plasma-sprayed TiB2 nanocomposite coating / X. Wang [et al.] // J. Alloys Comp. 2024. V.1007. Art.176389. https://doi.org/10.1016/j.jallcom.2024.176389
  10. Kou, Q. Electrophoretic deposition of TiB2 coatings on cemented carbide in molten fluorides / Q. Kou [et al.] // Ceram. Intern. 2024. V. P. https://doi.org/10.1016/j.ceramint.2024.11.460
  11. Liang, Q. Parameter optimization for in-situ synthesized TiB2/TiC particle composite coatings by laser cladding based on OOA-RFR and U-NSGA-III / Q. Liang [et al.] // Optics & Laser Tech. 2025. V.181. Art.111755 https://doi.org/10.1016/j.optlastec.2024.111755
  12. Верхотуров, А.Д. Закономерности формирования покрытий на стали при электроискровом легировании гетерофазными материалами TiB2-Mo / А.Д. Верхотуров, И.А. Подчерняева, Ф.Ф. Егоров // Порошковая металлургия. 1983. №12. С.61–63. – (Verkhoturov, A.D. Regularities of formation of coatings on steel during electric spark alloying with heterophase materials TiB2-Mo / A.D. Verkhoturov, I.A. Podchernyaeva, F.F. Egorov // Powder Met. 1983. №12. P.61–63.)
  13. Burkov, A.A. Influence of substrate surface on electro-spark alloying / A.A. Burkov, A.Y. Bytsura // Surface Eng. Appl. Electrochem. 2024. V.60. №2. P.204–210. https://doi.org/10.3103/s106837524020030
  14. Бурков, А.А. Характеристика Ti-Zr-покрытия на титановом сплаве Ti6Al4V / А. А. Бурков, М.А. Кулик, А.Ю. Быцура // Металлы. 2024. №2. С.36–44. https://doi.org/10.31857/S0869573324023644. – (Burkov, A.A. Characteristics of Ti-Zr coating on titanium alloy Ti6Al4V / A.A. Burkov, M.A. Kulik, A.Yu. Bytsura // Russian Metallurgy. 2024. №2. P.36–44. https://doi.org/10.31857/S0869573324023644)
  15. Tarelnyk, V.B. Electrospark deposition of multilayer coatings / V.B. Tarelnyk [et al.] // Powder Met. Metal Ceram. 2020. V.59. P.76–88. https://doi.org/10.1007/s11106-020-00140-x
  16. Habibi, F. In-situ formation of ultra-hard titanium-based composite coatings on carbon steel through electro-spark deposition in different gas media / F. Habibi, A. Samadi // Surface Coat. Tech. 2024. V.478. Art.130472. https://doi.org/10.1016/j.surfcoat.2024.130472
  17. Shafyei, H. Fabrication, microstructural characterization and mechanical properties evaluation of Ti/TiB/TiB2 composite coatings deposited on Ti6Al4V alloy by electro-spark deposition method / H. Shafyei, M. Salehi, A. Bahrami // Ceram. Intern. 2020. V.46. №10. Р.15276–15284. https://doi.org/10.1016/j.ceramint.2020.03.068
  18. Бурков, А.А. Получение аморфных покрытий электроискровой обработкой стали 35 в смеси железных гранул с CrMoWCBSi порошком / А.А. Бурков // Обработка металлов : технология, оборудование, инструменты. 2019. Т.21. №4. С.19–30. https://doi.org/10.17212/1994-6309-2019-21,4-19-30. – (Burkov, A.A. Obtaining amorphous coatings by electric spark treatment of steel 35 in a mixture of iron granules with CrMoWCBSi powder / A.A. Burkov // Metal processing : technology, equipment, tools. 2019. V.21. №4. P.19–30. https://doi.org/10.17212/1994-6309-2019-21,4-19-30)
  19. Burkov, A.A. Improvement of Ti6Al4V-alloy wear resistance by electric-spark hafnium carbide coatings / A.A. Burkov // J. Frict. Wear. 2020. V.41. P.543–548. https://doi.org/10.3103/S1068366620060045
  20. Бурков, А.А. Электроискровое осаждение порошка диборида хрома на нержавеющую сталь AISI 304 / А.А. Бурков [и др.] // Обработка металлов : технология, оборудование, инструменты. 2022. Т.24. №2. С.78–90. https://doi.org/10.17212/1994-6309-2022-24.2-78-90. – (Burkov, A.A. Electric spark deposition of chromium diboride powder on stainless steel AISI 304 / A.A. Burkov [et al.] // Metal processing : technology, equipment, tools. 2022. V.24. №2. P.78–90. https://doi.org/10.17212/1994-6309-2022-24.2-78-90)
  21. Cassie, A.B.D. Wettability of porous surfaces / A.B.D. Cassie, S. Baxter // Trans. Faraday Soc. 1944. V.40. Р.546–551.
  22. Li, Y.C. Effect of spray powder particle size on the bionic hydrophobic structures and corrosion performance of Fe-based amorphous metallic coatings / Li Y.C. [et al.] // Surface Coat. Tech. 2022. V.437. Art.128377. https://doi.org/10.1016/j.surfcoat.2022.128377
  23. Munro, R.G. Material properties of titanium diboride / R.G. Munro // J. Res. National Inst. Standards Tech. 2000. V.105. №5. Art.709. https://doi.org/10.6028/jres.105.057
  24. Matsubara, T. Fabrication of TiB2 reinforced Al3Ti composite layer on Ti substrate by reactive-pulsed electric current sintering / T. Matsubara [et al.] // Mater. Sci. Eng. A. 2002. V.329. Р.84–91. https://doi.org/10.1016/S0921-5093(01)01555-6
  25. Mikula, M. Mechanical properties of superhard TiB2 coatings prepared by DC magnetron sputtering / M. Mikula [et al.] // Vacuum. 2007. V.82. №2. Р.278–281. https://doi.org/10.1016/j.vacuum.2007.07.036
  26. Li, Q.H. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process / Li Q.H. [et al.] // Met. Mater. Trans. A. 2013. V.44. Р.1767–1778. https://doi.org/10.1007/s11661-012-1535-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences