One-Pot Synthesis of 3,4-Dihydropyrimidino[2,1-a]isoindol-6(2H)-one

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One-pot synthesis of 3,4-dihydropyrimidino[2,1-a]isoindol-6(2H)-one, an analog of the promising anti-cancer drug batracilin, has been developed. Both acylation of 1,3-diaminopropane with phthalic anhydride and followed by cyclocondensation took place while heating in toluene or ortho-xylene. The highest yield 76% of the target isoindolone was obtained by adding 1,3-diaminopropane to phthalic anhydride in toluene, while reverse order of mixing the reagents, decreases the yield to 60%. The reaction proceeds stepwise, through the formation of 2-(3-aminopropyl)carbamoyl)benzoic acid, which is converted to isoindolone upon heating with 68% yield.

About the authors

G. S Martyanov

Postovsky Institute of Organic Synthesis UB RAS

ORCID iD: 0000-0002-5850-8443
Ekaterinburg, Russia

M. A Barabanov

Postovsky Institute of Organic Synthesis UB RAS

Email: filmsey@mail.ru
ORCID iD: 0009-0000-1152-0317
Ekaterinburg, Russia

A. V Pestov

Postovsky Institute of Organic Synthesis UB RAS

ORCID iD: 0000-0002-4270-3041
Ekaterinburg, Russia

References

  1. Ettlinger M., Hodgkins J. J. Am. Chem. Soc., 1955, 77, 1831–1836. doi: 10.1021/ja01612a035
  2. Beaton G., Moree W.J., Rueter J.K., Dahl R.S., Meelligott D.L., Goldman P., Demaggio A.J., Christenson E., Herendeen D., Fowler K.W., Huang D., Bertino J.A., Bourdon L.H., Fairfax D.J., Jiang Q., Reisch H.A., Song R.H., Zhichkin P.E. WO 2003 015785 (2003). Cd, 2003, 138, 205069.
  3. Iwata M., Kuzuhara H. Bull. Chem. Soc. Jpn., 1989, 62, 198–210. doi: 10.1246/bcsj.62.198
  4. Houlihan W.J., Kelly L., Pankuch J., Koletar J., Brand L., Janowsky A., Kopajic T.A. J. Med. Chem., 2002, 45, 4097–4109. doi: 10.1021/jm010302r
  5. Ravu R.R., Jacob M.R., Khan S.I., Wang M., Cao L., Agarwal A.K., Clarek A. M., Li X.-C. J. Nat. Prod., 2021, 84, 2129–2199. doi: 10.1021/acs.jnatprod.1c00116
  6. Plowman J., Pauli K., Atassi G., Harrison S., Dykes D., Kabbe H., Narayanan V.L., Yoder O. Invest. New Drugs, 1988, 6, 147–153. doi: 10.1007/BF00175391
  7. Rao V.A., Agama K., Holbeck S., Pommiert Y. Cancer Res., 2007, 20, 9971–9979. doi: 10.1158/0008-5472.CAN-07-0804
  8. Martyanov G.S., Barabanov M.A., Pestov A.V. XIII Int. Conf. Chem. Young Sci. "Mendeleev 2024", St. Petersburg: VVM Publishing LLC, 2024, 473. https://drive.google.com/file/d/1DyY-C1-Dop22VZNWDAMRNQG_e38a3HUL/view
  9. Tequi P., Peano A., Decuupere M., Gibbs A., Kleijwegt P., Muhla S., Le Deore C., Yifru A. WO 2022 259193 (2022). Cd, 2022, 181, 91453.
  10. Nakamura A., Takamoto K. Pat. 4130075 (2008). Japan. Cd, 2008, 139, 53036.
  11. Eguchi S., Takeuchi H. J. Chem. Soc., Chem. Commun., 1989, 9, 602–603. doi: 10.1039/C39890000602
  12. Gaozza C.H., Grinberg H., Lamdan S. J. Heterocycl. Chem., 1972, 9, 883–886. doi: 10.1002/jhet.5570090422
  13. Spiessens L. I., Anteunis M. J. O. Bull. Soc. Chim. Belg., 1983, 92, 965–993. doi: 10.1002/bscb.19830921107
  14. Veznik F., Guggisberg A., Hesse M. Helv. Chim. Acta, 1991, 74, 654–661. doi: 10.1002/hlca.19910740322
  15. Kraus M.A. Synthesis, 1973, 6, 361–362. doi: 10.1055/s-1973-22217
  16. Atkins P.W., de Paula J. Phys. Chem. Life Sci., 3rd ed., Oxford Univ. Press, Oxford, 2006. doi: 10.1093/hessc/9780198830108.001.0001
  17. Sulkowski T.S. Pat. 3507867 (1968). USA. C4, 1968, 74, 757774.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences