Application of a three-component model to describe non-isothermal pyrolysis of rice husk

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The experimental data on rice husk pyrolysis obtained by thermogravimetric method in non-isothermal mode were processed based on three-component kinetic model. According to the model, biomass is represented by the sum of three components — hemicellulose, cellulose and lignin. Pyrolysis of each component proceeds by independent irreversible first-order reaction. To determine the model parameters, the experimental data processing technique based on the difference in temperature ranges of hemicellulose, cellulose and lignin pyrolysis, improved in this work, was used. The activation energies of rice husk component pyrolysis were as follows: 21.3 kJ/mol for lignin, 110 kJ/mol for cellulose, and 38 kJ/mol for hemicellulose. The discrepancy between the experimental and calculated data on the sample mass was less than 1%. For comparison, the experimental data were processed using the one-component Ginstling–Brownestein model using the Coats–Redfern method.

全文:

受限制的访问

作者简介

S. Zavarukhin

Boreskov Institute of Catalysis SB RAS; Novosibirsk State Technical University

编辑信件的主要联系方式.
Email: zsg@catalysis.ru
俄罗斯联邦, Akad. Lavrentieva ave., 5, Novosibirsk, 630090; K. Marksa ave., 20, Novosibirsk, 630073

A. Korkina

Novosibirsk State Technical University

Email: zsg@catalysis.ru
俄罗斯联邦, K. Marksa ave., 20, Novosibirsk, 630073

V. Yakovlev

Boreskov Institute of Catalysis SB RAS

Email: zsg@catalysis.ru
俄罗斯联邦, Akad. Lavrentieva ave., 5, Novosibirsk, 630090

参考

  1. Гребенкина А.В., Шишова Н.В., Литвинова Т.А., Косулина Т.П. // Научные труды КубГТУ. 2017. № 7. С. 177.
  2. Demirbas A., Arin D. // Energy Sources. 2002. V. 5. P. 471.
  3. Коробочкин В.В., Нгуен М.Х., Усольцева Н.В., Нгуен В.Т. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328. № 5. C. 6.
  4. Di Blasi C. // Prog. Energy Combust. Sci. 2008. V. 34. P. 47.
  5. Sharma A., Pareek V., Zhang D. // Renew. Sustain. Energy Rev. 2015. V. 50. P. 1081.
  6. Papari S., Hawboldt K. // Renew. Sustain.e Energy Rev. 2015. V. 52. P. 1580.
  7. Caballero J.A., Conesa J.A., Font R., Marcilla A. // J. Anal. Appl. Pyrol. 1997. V. 42. P. 159.
  8. Orfao J.J.M., Antunes F.J.A., Figueiredo J.L. // Fuel. 1999. V. 78. P. 349.
  9. Helsen L., Van den Bulck E. // J. Anal. Appl. Pyrol. 2000. V. 53. P. 51.
  10. Sorum L., Gronli M.G., Hustad J.E. // Fuel. 2001. V. 80. P. 1217.
  11. Garsia-Perez M., Chaala A., Yang J., Roy C. // Fuel. 2001. V. 80. P. 1245.
  12. Gronli M.G., Varhegyi G., Di Blasi C. // Ind. Eng. Chem. Res. 2002. V. 41. P. 4201.
  13. Vamvuka D., Karakas E., Kastanaki E., Grammelis P. // Fuel. 2003. V. 82. P. 1949.
  14. Заварухин С.Г., Яковлев В.А. // Кинетика и катализ. 2021. Т. 62. № 4. С. 647.
  15. Teng H., Lin H.C., Ho J.A. // Ind. Eng. Chem. Res. 1997. V. 36. P. 3974.
  16. Teng H., Wei Y.C. // Ind. Eng. Chem. Res. 1998. V. 37. P. 3806.
  17. Radmanesh R., Courbariaux Y., Chaouki J., Guy C. // Fuel. 2006. V. 85. P. 1211.
  18. Vlaev L.T., Markovska I.G., Lyubchev L.A. // Thermochim. Acta. 2003. V. 406. P. 1.
  19. Guo J., Lua A.C. // J. Therm. Anal. Calorim. 2000. V. 59. P. 763.
  20. Rao T.R., Sharma A. // Energy. 1998. V. 23. P. 973.
  21. Sharma A., Rao T.R. // Biores. Technol. 1999. V. 67. P. 53.
  22. Lim A.C.R., Chin B.L.F., Jawad Z.A., Hii K.L. // Proc. Eng. 2016. V. 148. P. 1247.
  23. Табакаев Р.Б., Алтынбаева Д.Б., Ибраева К.Т., Заворин А.С. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 12. С. 117.
  24. Фетисова О.Ю., Микова Н.М., Таран О.П. // Кинетика и катализ. 2020. Т. 61. № 6. С. 804.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the sample mass change on temperature.

下载 (75KB)
3. Fig. 2. Experimental dependence of sample mass m and calculated dependence of r + g3 on temperature, where g3 is the variable lignin mass.

下载 (75KB)
4. Fig. 3. Experimental dependence of s3 and calculated dependence of g2 on temperature, where s3 = m – r – g3, g2 is the variable cellulose mass.

下载 (68KB)
5. Fig. 4. Experimental dependence of s2 and calculated dependence of g1 on temperature, where s2 = m — r — g3 — g2, g1 is the variable hemicellulose mass.

下载 (73KB)
6. Fig. 5. Comparison of calculated (line) and experimental (points) data on the dependence of sample mass on temperature.

下载 (76KB)
7. Fig. 6. Data processing according to equation (21).

下载 (66KB)
8. Fig. 7. Comparison of data calculated using the Ginstling–Brounshtein model (line) and experimental data (points) for sample mass vs. temperature.

下载 (79KB)