Kinetic Peculiarities of Suzuki Reaction under Conditions of Competing Substrates in the Presence of Palladium Catalysts Deposted on Sulfonated Porous Aromatic Polymer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work, the Suzuki reaction was studied under conditions of competing substrates in the presence of catalysts, containing PdII or Pd0 nanoparticles, synthesized using a sulfonated amorphous aromatic polymer as a support. The paper discusses the influence of reaction conditions (stirring rate, temperature, nature of the base), as well as various pairs of competing aryl halides (bromides and iodides) containing both electron-donating and electron-withdrawing groups. It was shown for the first time that aryl bromides containing electron-withdrawing groups in the p-position with respect to the halogen are capable of noticeably slowing down the conversion of each other, as well as stopping the conversion of other aryl bromides in the presence of Pd0 nanoparticles as a source of catalytically active forms of palladium. Additives of sodium salt anions (chloride, bromide and acetate) are able to prevent the reaction from stopping.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Nikoshvili

Tver State Technical University

Хат алмасуға жауапты Автор.
Email: nlinda@science.tver.ru
Ресей, Tver

E. Bakhvalova

Tver State Technical University

Email: nlinda@science.tver.ru
Ресей, Tver

M. Sulman

Tver State Technical University

Email: nlinda@science.tver.ru
Ресей, Tver

Әдебиет тізімі

  1. Trzeciak A.M., Augustyniak A.W. // Coord. Chem. Rev. 2019. V. 384. P. 1.
  2. Pagliaro M., Pandarus V., Ciriminna R., Béland F., DemmaCarà P. // ChemCatChem. 2012. V. 4. P. 432.
  3. Eremin D.B., Ananikov V.P. // Coord. Chem. Rev. 2017. V. 346. P. 2.
  4. Афанасьев В.В., Беспалова Н.Б., Белецкая И.П. // Российский химический журнал. 2006. Т. 50. № 4. С. 81.
  5. Ashraf M., Ahmad M.S., Inomata Y., Inomata Y., Ullah N., Tahir M.N., Kida T. // Coord. Chem. Rev. 2023. V. 476. P. 214928.
  6. Kashin A.S., Ananikov V.P. // J. Org. Chem. 2013. V. 78. P. 11117.
  7. Astruc D. // Inorg. Chem. 2007. V. 46. P. 1884.
  8. Шмидт А.Ф., Аль-Халайка А., Смирнов В.В., Курохтина А.А. // Кинетика и катализ. 2008. Т. 49. № 5. С. 669. (Schmidt A.F., Al-Halaiqa A., Smirnov V.V., Kurokhtina A.A. // Kinet. Catal. 2008. V. 49. P. 638.)
  9. Chinchilla R., Nájera C. // Chem. Soc. Rev. 2011. V. 40. P. 5084.
  10. D’Alterio M.C., Casals-Cruañas È., Tzouras N.V., Talarico G., Nolan S.P., Poater A. // Chem. Eur. J. 2021. V. 27. P. 13481.
  11. Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P. // J. Am. Chem. Soc. 2023. V. 145. P. 9092.
  12. Шмид А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А., Явсин Д.А., Гуревич С.А., Зеликман В.М., Кротова И.Н., Ростовщикова Т.Н., Тарханова И.Г. // Кинетика и катализ. 2023. T. 64. № 1. С. 39. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A., Yavsin D.A., Gurevich S.A., Zelikman V.M., Krotova I.N., Rostovshchikova T.N., Tarkhanova I.G. // Kinet. Catal. 2023. V. 64. P. 32.)
  13. Денисов Е.Т. Кинетика гомогенных каталитических реакций: учеб. пособие для вузов. 2-е изд. Москва: Высшая школа, 1978. 367 с.
  14. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2012. Т. 53. № 1. С. 86. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinetics and Catalysis. 2012. V. 53. № 1. P. 84.)
  15. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А. // Тонкие химические технологии. 2023. Т. 18. № 4. С. 328. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A. // Fine Chem. Technol. 2023. V. 18. P. 328.)
  16. Ларина Е.В., Курохтина А.А., Лагода Н.А., Григорьева Т.А., Шмидт А.Ф. // Кинетика и катализ. 2023. Т. 64. № 4. С. 428. (Larina E.V., Kurokhtina A.A., Lagoda N.A., Grigoryeva T.A., Schmidt A.F. // Kinet. Catal. 2023. V. 64. № 4. P. 431.)
  17. Ларина Е.В., Ярош Е.В., Лагода Н.А., Курохтина А.А., Шмидт А.Ф. // Кинетика и катализ. 2019. Т. 60. № 3. С. 358. (Larina E.V., Yarosh E.V., Lagoda N.A., Kurokhtina A.A., Shmidt A.F. // Kinet. Catal. 2019. V. 60. № 3. P. 337.)
  18. Bakhvalova E.S., Bykov A.V., Markova M.E., Lugovoy Y.V., Sidorov A.I., Molchanov V.P., Sulman M.G., Kiwi-Minsker L., Nikoshvili L.Z. // Molecules. 2023. V. 28. P. 4938.
  19. Tan L., Tan B. // Chem. Soc. Rev. 2017. V. 46. Р. 3322.
  20. Yadav C., Maka V.K., Payra S., Moorthy J.N. // J. Catal. 2020. V. 384. Р. 61.
  21. Wang G., Wu Z., Liang Y., Liu W., Zhan H., Song M., Sun Y. // J. Catal. 2020. V. 384. Р. 177.
  22. Dalla Valle C., Zecca M., Rastrelli F., Tubaro C., Centomo P. // Polymers. 2020. V. 12. P. 600.
  23. Sapunov V.N., Nikoshvili L.Z., Bakhvalova E.S., Sulman M.G., Matveeva V.G. // Processes. 2023. V. 11. P. 878.
  24. Gao M., Wang J., Shang W., Chai Y., Dai W., Wu G., Guan N., Li L. // Catal. Today. 2023. V. 410. P. 237.
  25. Ruiz J.R., Jiménez-Sanchidrián C., Mora M. // Tetrahedron. 2006. V. 62. P. 2922.
  26. Xiao Q., Sarina S., Jaatinen E., Jia J., Arnold D.P., Liu H., Zhu H. // Green Chem. 2014. V. 16. P. 4272.
  27. Adamo C., Amatore C., Ciofini I., Jutand A., Lakmini H. // J Am. Chem. Soc. 2006. V. 128. P. 6829.
  28. Collins G., Schmidt M., O’Dwyer C., Holmes J.D., McGlacken G.P. // Angew. Chem. Int. Ed. 2014. V. 53. P. 4142.
  29. Saini S., Kumar K., Saini P., Sethi M., Meena P., Dandia A., Weigand W., Parewa V. // ACS Appl. Mater. Interfaces. 2024. Article ASAP.
  30. Jang W., Yun J., Ludwig L., Jang S.G., Bae J.Y., Byun H., Kim J.-H. // Front. Chem. 2020. V. 8. P. 834.
  31. Nikoshvili L., Bakhvalova E.S., Bykov A.V., Sidorov A.I., Vasiliev A.L., Matveeva V.G., Sulman M.G., Sapunov V.N., Kiwi-Minsker L. // Processes. 2020. V. 8. P. 1653.
  32. Шмидт А.Ф., Курохтинa А.А., Ларинa Е.В. // Кинетика и катализ. 2019. Т. 60. № 5. С. 555. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2019. V. 60. № 5. P. 551.)
  33. Бахвалова Е.С., Быков А.В., Никошвили Л.Ж., Киви Л.Л. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. № 13. С. 646.
  34. Ларинa Е.В., Курохтинa А.А., Лагода Н.А, Шмидт А.Ф. // Кинетика и катализ. 2022. Т. 63. № 2. С. 234. (Larina E.V., Kurokhtina A.A., Lagoda N.A., Schmidt A.F. // Kinet. Catal. 2022. V. 63. № 2. P. 207.)
  35. Scott N.W.J., Ford M.J., Jeddi N., Eyles A., Simon L., Whitwood A.C., Tanner T., Willans C.E., Fairlamb I.J.S. // J. Am. Chem. Soc. 2021. V. 143. P. 9682.
  36. Kalek M., Jezowska M., Stawinski J. // Adv. Synth. Catal. 2009. V. 351. P. 3207.
  37. Jutand A. // Appl. Organometal. Chem. 2004. V. 18. P. 574.
  38. Ivančič A., Košmrlj J., Gazvoda M. // Commun. Chem. 2023. V. 6. P. 51.
  39. Fu F., Xiang J., Cheng H., Cheng L., Chong H., Wang S., Li P., Wei S., Zhu M., Li Y. // ACS Catal. 2017. V. 7. P. 1860.
  40. Mohajer F., Heravi M.M., Zadsirjan V., Poormohammad N. // RSC Adv. 2021. V. 11. P. 6885.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Suzuki cross-coupling response

Жүктеу (75KB)
3. Fig. 1. Photograph of SNF polymer granules

Жүктеу (307KB)
4. Fig. 2. High-resolution XRD spectrum of Pd3d (a) and light-field PEM image of the catalyst 1% Pd/SNF-R (b)

Жүктеу (251KB)
5. Fig. 3. Dependence of catalytic activity on stirring rate in the cross-coupling reaction of 4-bromanisole and phenylboronic acid in the presence of 1% Pd/SNF-R

Жүктеу (73KB)
6. Fig. 4. Time dependences of 4-bromanisole concentration (a, b), the fraction of the cross-coupling product in the mixture with the homocoupling product (biphenyl) on 4-bromanisole conversion (c, d), as well as the corresponding phase trajectories (e, f) when varying the reaction temperature in the presence of initial 1% Pd/SNF (a, c, e) and reduced 1% Pd/SNF-R (b, d, f) samples

Жүктеу (512KB)
7. Fig. 5. Kinetic curves of aryl halide concentration-time dependence in the presence of competing substrates: 4-iododnisole and 4-bromanisole (a), 4-bromonitrobenzene and 4-bromanisole (b), as well as the effect of sodium salt additives on the concentration-time dependence of 4-bromonitrobenzene (solid lines) and 4-bromanisole (dashed lines) (c) and phase trajectories (d) in the presence of 1% Pd/SNF-R catalyst

Жүктеу (409KB)
8. Fig. 6. Comparison of time dependences of 4-bromo-nitrobenzene and 4-bromobenzaldehyde concentrations in separate experiments (black symbols) and under conditions of competing substrates (grey symbols) in the presence of initial 1% Pd/SNF (a) and reduced 1% Pd/SNF-R (b) catalysts, as well as the corresponding phase trajectories obtained at the first and repeated use of samples of 1% Pd/SNF (c) and 1% Pd/SNF-R (d) under the conditions of competing substrates

Жүктеу (359KB)
9. Fig. 7. Light-field PREM images of the initial 1% Pd/SNF-R (a) and samples of 1% Pd/SNF-R (b) and 1% Pd/SNF (c) after Suzuki reaction under the conditions of competing substrates (4-bromo-nitrobenzene and 4-bromobenzaldehyde); example of dark-field image (d) and Pd EDS mapping (e) for 1% Pd/SNF-R catalyst after reaction, as well as histograms of particle size distribution in samples (f)

Жүктеу (390KB)