Effect of Quantum Decoherence on Collective Neutrino Oscillations
- Autores: Purtova A.A.1, Stankevich K.L.1, Studenikin A.I.1
 - 
							Afiliações: 
							
- Faculty of Physics, Moscow State University
 
 - Edição: Volume 118, Nº 1-2 (7) (2023)
 - Páginas: 73-76
 - Seção: Articles
 - URL: https://vietnamjournal.ru/0370-274X/article/view/663102
 - DOI: https://doi.org/10.31857/S123456782314001X
 - EDN: https://elibrary.ru/GXNXDJ
 - ID: 663102
 
Citar
Texto integral
Resumo
The effect of the quantum decoherence of neutrino mass states on collective oscillations of neutrinos has been studied for the case of three flavors using a method based on the stability analysis of the Lindblad equation with the neutrino evolution Hamiltonian including the effects of the self-interaction. New analytical conditions for the appearance of collective neutrino oscillations in supernova explosions have been obtained taking into account the quantum decoherence of neutrinos.
Sobre autores
A. Purtova
Faculty of Physics, Moscow State University
														Email: finollari@gmail.com
				                					                																			                												                								Moscow, 119991 Russia						
K. Stankevich
Faculty of Physics, Moscow State University
														Email: kl.stankevich@physics.msu.ru
				                					                																			                												                								Moscow, 119991 Russia						
A. Studenikin
Faculty of Physics, Moscow State University
							Autor responsável pela correspondência
							Email: studenik@srd.sinp.msu.ru
				                					                																			                												                								Moscow, 119991 Russia						
Bibliografia
- F. N. Loreti and A. B. Balantekin, Phys. Rev. D 50, 4762 (1994).
 - C. P. Burgess and D. Michaud, Ann. Phys. 256, 1 (1997).
 - F. Benatti and R. Floreanini, Phys. Rev. D 71, 013003 (2005).
 - M. Dvornikov, Phys. Rev. D 104(4), 043018 (2021).
 - K. Stankevich and A. Studenikin, PoS, EPS-HEP2017, 645 (2018).
 - K. Stankevich and A. Studenikin, Phys. Rev. D 101(5), 056004 (2020).
 - A. Lichkunov, K. Stankevich, A. Studenikin, and M. Vyalkov, PoS EPS-HEP2021, 202 (2022).
 - J. F. Nieves and S. Sahu, Phys. Rev. D 99(9), 095013 (2019).
 - J. F. Nieves and S. Sahu, Phys. Rev. D 102(5), 056007 (2020).
 - G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
 - V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).
 - H. Duan, G. M. Fuller, and Y.-Z. Qian, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010).
 - K. Stankevich and A. Studenikin, PoS, ICHEP2020, 216 (2021).
 - A. Banerjee, A. Dighe, and G. Ra elt, Phys. Rev. D 84, 053013 (2011).
 - C. Giunti, Phys. Lett. B 686, 41 (2010).
 - G. Balieiro Gomes, M. M. Guzzo, P. C. de Holanda, and R. L. N. Oliveira, Phys. Rev. D 95(11), 113005 (2017).
 - J. A. B. Coelho, W. A. Mann, and S. S. Bashar, Phys. Rev. Lett. 118(22), 221801 (2017).
 - R. L. N. Oliveira, Eur. Phys. J. C 76(7), 417 (2016).
 - G. B. Gomes, D. V. Forero, M. M. Guzzo, P. C. De Holanda, and R. L. N. Oliveira, Phys. Rev. D 100(5), 055023 (2019).
 - A. de Gouvea, V. de Romeri, and C. A. Ternes, JHEP 08, 018 (2020).
 - P. C. de Holanda, JCAP 03, 012 (2020).
 - S. Sarikas, G. Ra elt, L. Hudepohl, and H.-Th. Janka, Phys. Rev. Lett. 108, 061101 (2012).
 - N. Saviano, S. Chakraborty, T. Fischer, and A. Mirizzi, Phys. Rev. D 85, 113002 (2012).
 - D. Vaananen and C. Volpe, Phys. Rev. D 88, 065003 (2013).
 - D. Vaananen and G. C. McLaughlin, Phys. Rev. D 93(10), 105044 (2016).
 - C. Doring, R. S. L. Hansen, and M. Lindner, JCAP 08, 003 (2019).
 - J. F. Nieves and S. Sahu, Phys. Rev. D 100(11), 115049 (2019).
 
Arquivos suplementares
				
			
						
						
					
						
						
									


