Optical computation of the Laplace operator at normal incidence using a multilayer metal-dielectric structure
- Autores: Kashapov A.I.1,2, Bezus E.A.1,2, Bykov D.A.1,2, Doskolovich L.L.1,2
 - 
							Afiliações: 
							
- Image Processing Systems Institute, National Research Centre «Kurchatov Institute»
 - Samara National Research University
 
 - Edição: Volume 89, Nº 1 (2025)
 - Páginas: 13-17
 - Seção: Wave Phenomena: Physics and Applications
 - URL: https://vietnamjournal.ru/0367-6765/article/view/683809
 - DOI: https://doi.org/10.31857/S0367676525010026
 - EDN: https://elibrary.ru/DCJWJG
 - ID: 683809
 
Citar
Texto integral
Resumo
We theoretically and numerically investigate the optical implementation of the second-order spatial differentiation operation using a layered metal-dielectric structure at normal light beam incidence. Numerical simulation results confirm the theoretical results and show the possibility of ‘optical calculation of the Laplace operator with high quality.
			                Palavras-chave
Sobre autores
A. Kashapov
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research University
														Email: ar.kashapov@gmail.com
				                					                																			                												                								Samara, Russia; Samara, Russia						
E. Bezus
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research UniversitySamara, Russia; Samara, Russia
D. Bykov
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research UniversitySamara, Russia; Samara, Russia
L. Doskolovich
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research UniversitySamara, Russia; Samara, Russia
Bibliografia
- Bykov D.A., Doskolovich L.L., Bezus E.A., Soifer V.A. // Opt. Express. 2014. V. 22. No. 21. P. 25084.
 - Doskolovich L.L., Kashapov A.I., Bezus E.A. et al. // Opt. Express. 2023. V. 31. No. 10. P. 17050.
 - Zhou Y., Zheng H., Kravchenko I.I., Valentine J. // Nature Photon. 2020. V. 14. P. 316.
 - Tu Y., Liang Y., Zhu X. et al. // Opt. Commun. 2023. V. 549. Art. No. 129935.
 - Guo C., Xiao M., Minkov M. et al. // Optica. 2018. V. 5. No. 3. P. 251.
 - Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // Comp. Opt. 2023. V. 47. No. 6. P. 845.
 - Кашапов А.И., Безус Е.А., Быков Д.А., Досколович Л.Л. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 19
 - Kashapov A.I., Bezus E.A., Bykov D.A., Doskolovich L.L. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 13.
 - Soshnikov D.V., Doskolovich L.L., Byzov E.V. et al. // Comp. Opt. 2023. V. 47. No. 5. P. 691.
 - Wesemann L., Panchenko E., Singh K. et al. // APL Photonics. 2019. V. 4. No. 10. Art. No. 100801.
 - Pan D., Wan L., Ouyang M. et al. // Photon. Res. 2021. V. 9. No. 9. P. 1758.
 - Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // J. Optics. 2021. V. 23. No. 2. Art. No. 023501.
 - Doskolovich L.L., Kashapov A.I., Bezus E.A. et al. // Photon. Nanostruct. 2022. V. 52. Art. No. 101069.
 - https://refractiveindex.info/
 - Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. No. 12. P. 4370.
 - Moharam M.G., Pommet D.A., Grann E.B. Gaylord T.K. // J. Opt. Soc. Amer. A. 1995. V. 12. P. 1077.
 
Arquivos suplementares
				
			
						
						
					
						
						
									


