The precision selection from an ensemble, movement on nanometer scale and angular orientation of nanoparticles based on NaYF4 and YVO4 doped with Yb and Er, showing upconversion luminescent properties. The scanning probe microscopy approach

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We show that a scanning probe microscope allows precision manipulation of an ensemble of upconversion nanoparticles uncontrolledly deposited on the surface of a glass substrate. The possibility of controlled movement of such particles over distances of several tens of micrometers was demonstrated, which made it possible to leave several separateв from each other upconversion nanoparticles (or their small conglomerates) on a surface with an area of about 104 µm2. The system of marks on the substrate made it possible to find and carry out multiple sequential manipulations, including movements over submicron distances and rotation at a given angle of a single upconversion nanoparticle. The adhesion force of an individual upconversion nanoparticle to the substrate surface was estimated.

Texto integral

Acesso é fechado

Sobre autores

А. Chuklanov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: achuklanov@kfti.knc.ru

Zavoisky Physical-Technical Institute

Kazan

A. Morozova

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: achuklanov@kfti.knc.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

Ye. Mityushkin

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: achuklanov@kfti.knc.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

V. Nikiforov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: achuklanov@kfti.knc.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

N. Nurgagizov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: achuklanov@kfti.knc.ru

Zavoisky Physical-Technical Institute

Rússia, Kazan

Bibliografia

  1. Никифоров В.Г. // Изв. РАН. Сер. физ. 2021. T. 85. № 12. C. 1734, Nikiforov V.G. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1383.
  2. Zaldo C. // In: Lanthanide-based multifunctional materials. Elsevier, 2018). P. 335.
  3. Zharkov D.K., Shmelev A.G., Leontyev A.V. et al. // Laser Phys. Lett. 2020. V. 17. P. 075901.
  4. Митюшкин Е.О., Жарков Д.К., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1724, Mityushkin E.O., Zharkov D.K., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1806.
  5. Жарков Д.К., Митюшкин Е.О., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1735, Zharkov D.K., Mityushkin E.O., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1817.
  6. Бухараев А.А., Бизяев Д.А., Нургазизов Н.И., Ханипов Т.Ф. // Микроэлектроника. 2012. Т. 41. № 2. С. 90.
  7. Burger P., Singh G., Johansson C. et al. // ACS Nano. 2022. V. 16. P. 19253.
  8. Шмелев А.Г., Никифоров В.Г., Жарков Д.К. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1744, Shmelev A.G., Nikiforov V.G., Zharkov D.K. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1439.
  9. Ren G., Zeng S., Hao J. // J. Phys. Chem. C2011. V. 115. No. 41. P. 20141.
  10. Ziganshin M.A., Efimova I.G., Gorbatchuk V.V. et al. // J. Peptide Sci. 2012. V. 18. No. 4. P. 209.
  11. Миронов В.Л. Основы сканирующей зондовой микроскопии. Н. Новгород: ИФМ РАН, 2004. 114 c.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Images obtained in an optical microscope: a 20 mm long glass substrate with a system of marks applied to it (a), marks on the substrate and an AFM probe beam brought to the surface, the beam width is 30 µm (b).

Baixar (426KB)
3. Fig. 2. Power curves: dependence of the mismatch current between the upper and lower sections of the photodiode on the piezo scanner movement, obtained on the test surface of clean glass (a). Part of the curve in the range of –50—90 nm was used to recalculate the photodiode current due to the interaction of the probe with the sample (b). The result of averaging 8 power curves of the removal from the surface of a glass substrate with deposited NaYF4:Yb, Er ANCh (c).

Baixar (239KB)
4. Fig. 3. Optical images of a glass substrate with deposited NaYF4:Yb, Er nanoparticles before (a) and after (d) cleaning the surface from excess nanoparticles. The corresponding AFM images of this region before (b) and after (d) cleaning. AFM images of the solution residues (c) and the nanoparticle agglomerate (e). The corresponding scanning areas are shown in a frame.

Baixar (598KB)
5. Fig. 4. AFM images containing the same ANC after initial surface cleaning (a), after RCM measurements and rotation of the ANC by 65° (b) and by 156° (c).

Baixar (412KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024