Magnetization features of small multi-core particles: theory and computer simulations

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We investigated the orientation texturing of magnetic moments of four magnetic nanoparticles fixed at the vertices of a regular tetrahedron and formed a separate polyhedral particle. Numerical calculations of the probability density of the magnetic moment orientation, the static magnetization and the initial magnetic susceptibility of a multi-core particle are obtained by the Monte-Carlo method.

Texto integral

Acesso é fechado

Sobre autores

E. Grokhotova

Ural Federal University

Autor responsável pela correspondência
Email: lena.groxotova@mail.ru
Rússia, Ekaterinburg

A. Solovyova

Ural Federal University

Email: lena.groxotova@mail.ru
Rússia, Ekaterinburg

E. Elfimova

Ural Federal University

Email: lena.groxotova@mail.ru
Rússia, Ekaterinburg

Bibliografia

  1. Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. P. 2.
  2. Borin D.Yu., Zubarev A.Y., Chirikov D.N., Odenbach S. // J. Phys. Cond. Matter. 2014. V. 26. Art. No. 406002.
  3. Lopez-Lopez M.T., Borin D.Yu., Zubarev A.Y. // Phys. Rev. E. 2017. V. 96. Art. No. 022605.
  4. Schaller V., Wahnström G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
  5. Ahrentorp F., Astalan A., Blomgren J. et al. // J. Magn. Magn. Mater. 2015. V. 380. P. 221.
  6. Krishnan K.M. // IEEE Trans. Magn. 2010. V. 46. P. 2523.
  7. Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
  8. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  9. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  10. Нургазизов Н.И., Бизяев Д.А., Бухараев А.А. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 897; Nurgazizov N.I., Bizyaev D.A., Bukharaev A.A. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 815.
  11. Комина А.В., Ярославцев Р.Н., Герасимова Ю.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1597; Komina A.V., Yaroslavtsev R.N., Stolyar S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1362.
  12. Vargas-Osorio Z., Argibay B., Pineiro Y. et al. // IEEE Trans. Magn. 2016. V. 52. Art. No. 2300604.
  13. Schnorr J., Wagner S., Abramjuk C. et al. // Radiology. 2006. V. 240. P. 90.
  14. Wagner M., Wagner S., Schnorr J. et al. // J. Magn. Reson. Imaging. 2011. V. 34. P. 816.
  15. Kratz H., Taupitz M., Ariza de Schellenberger A. et al. // PLOS One. 2018. V. 13. Art. No. e0190214.
  16. Kurlyandskaya G., Shcherbinin S., Volchkov S. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 154.
  17. Mohtashamdolatshahi A., Kratz H., Kosch O. et al. // Sci. Reports. 2020. V. 10. Art. No. 17247.
  18. Kim J., Staunton J.R., Tanner K. // Adv. Mater. 2016. V. 28. P. 132.
  19. Tognato R., Bonfrate V., Giancane G., Serra T. // Smart Mater. Struct. 2022. V. 31. Art. No. 074001.
  20. Zhou W., Dong X., He Y. et al. // Smart Mater. Struct. 2022. V. 31. Art. No. 105002.
  21. Levada K., Omelyanchik A., Rodionova V. et al. // Cells. 2019. V. 8. P. 1279.
  22. Campos F., Bonhome-Espinosa A.B., Carmona R. et al. // Mater. Sci. Eng. C. 2021. V. 118. Art. No. 111476
  23. Zubarev A.Y. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
  24. Coïsson M., Barrera G., Appino C. et al. // J. Magn. Magn. Mater. 2019. V. 473. P. 403.
  25. Kahmann T., Ludwig F. // J. Appl. Phys. 2020. V. 127. Art. No. 233901.
  26. Schaller V., Wahnström G., Sanz-Velasco A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 1400.
  27. Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
  28. Ilg P. // Phys. Rev. E. 2019. V. 100. Art. No. 022608.
  29. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford University Press, 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of the model MGP. Granules with diameter d are located at the vertices of a tetrahedron with edge A.

Baixar (60KB)
3. Fig. 2. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 1: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

Baixar (103KB)
4. Fig. 3. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 3: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

Baixar (130KB)
5. Fig. 4. Dependence of magnetization M on the Langevin parameter α for a model MGP with edge A = 1: (a) , ; (b) , ; (c) , . The symbols denote the results of Monte Carlo simulations for different values ​​of the parameter λe, as indicated in the legend. The dotted line corresponds to the Langevin magnetization L(α).

Baixar (49KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024