Surface segregation in binary metallic nanoparticles: atomistic and thermodynamic simulations

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of molecular dynamics and atomistic simulations demonstrate segregation of Pd atoms to the surface of binary Pt-Pd nanoparticles and the surface segregation of Cr in Ni-Cr nanoparticles. At the same time, molecular dynamics results predict a transition from the surface segregation of Cr to the surface segregation of Ni at low Cr contents in Ni-Cr nanoparticles.

Full Text

Restricted Access

About the authors

V. M. Samsonov

Tver State University

Author for correspondence.
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

A. A. Romanov

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

I. V. Talyzin

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

D. V. Zhigunov

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

V. V. Puitov

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

References

  1. Сергеев И.Н., Шебзухов А.А. // Изв. РАН. Сер. физ. 2009. Т. 73. № 11. С. 1632; Sergeev I.N., Shebzukhov A.A. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. No. 11. P. 1532.
  2. Watts B.E. // Process. Appl. Ceram. 2009. V. 3. No. 1—2. P. 97.
  3. Ковалев А.И., Вайнштейн Д.Л., Рашковский А.Ю. // Изв. РАН. Сер. физ. 2016. Т. 80. № 10. С. 1402; Kovalev A.I., Wainstein D.L., Rashkovskiy A.Y. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 10. P. 1253.
  4. Ferrando R., Jellinek J., Johnston R.L. // Chem. Rev. 2008. V. 108. P. 845.
  5. Васильев С.А., Дьякова Е.В., Картошкин А.Ю. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1310; Vasilyev S.A., Dyakova E.V., Kartoshkin A.Y. et al. // Bull. Russ. Acad. Sci. Phys. V. 84. No. 9. P. 1116.
  6. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Appl. Nanosci. 2019. V. 9. No. 1. P. 119.
  7. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Comp. Mat. Sci. 2021. V. 199. P. 110710.
  8. Sato K., Matsushima Y., Konno T.J. // AIP Advances. 2017. V. 7. Art. No. 065309.
  9. Bohra M., Alman V., Showry A. et al. // ACS Omega. 2020. V. 5. P. 32883.
  10. Samsonov V.M. Romanov A.A., Talyzin I.V. et al. // Metals. 2023. V. 13. Art. No. 1269.
  11. Thompson A.P. // Comput. Phys. Commun. 2022. V. 271. Art. No. 108171.
  12. Samsonov V.M., Romanov A.A., Kartoshkin A.Yu. et al. // Appl. Phys. 2022. V. 128. No. 9. P. 826.
  13. Zhou X.W., Johnson R.A., Wadley H.N.G. // Phys. Rev. B. 2004. V. 69. No. 14. P. 113.
  14. Lin Z., Johnson R.A., Zhigilei L.V. // Phys. Rev. B. 2008. V. 77. P. 214108.
  15. Kaptay G. // Adv. Colloid Interface Sci. 2020. V. 283. P. 102212.
  16. Kaptay G. // J. Mater. Sci. 2016. V. 51. P. 1738.
  17. Tománek D., Mukherjee S., Kumar V. et al. // Surf. Science. 1982. V. 114. P. 11.
  18. Mendoza-Pérez R., Guisbiers G. // Nanotechnology. 2019. V. 30. P. 305702.
  19. Rousset J.L. // Phys. Rev. B. 1998. V. 58. No. 4. P. 2150.
  20. Fiermans L. // J. Catalys. 2000. V. 193. P. 108.
  21. Bernardi F. // J. Phys. Chem. C. 2009. V. 113. No. 10. P. 3909.
  22. Rodríguez-Proenza C., Palomares-Báez J., ChávezRojo M. // Materials. 2018. V. 11. P. 1882.
  23. Чепкасов И.В., Гафнер Ю.Я., Высотин М.А., Редель Л.В. // ФТТ. 2017. Т. 59. № 10. С. 2050; Chepkasov I.V., Gafner Y.Y., Vysotin M.A., Redel L.V. // Phys. Solid State. 2017. V. 59. No. 10. P. 2076.
  24. Ramirez Caballero G.E., Balbuena P.B. // Mol. Simulat. 2006. V. 32. P. 297.
  25. Самсонов В.М., Талызин И.В., Картошкин А.Ю., Самсонов М.В. // Физ. металл. и металловед. 2019. Т. 120. № 6. С. 630; Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Samsonov M.V. // Phys. Metal. Metallogr. 2019. V. 120. No. 6. P. 578.
  26. Samsonov V.M., Talyzin I.V., Puytov V.V. et al. // J. Chem. Phys. 2022. V. 156. No. 21. P. 214302.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependencies for Pt-Pd nanoparticles of different sizes, corresponding to a temperature of T = 300 K. Solid lines show the results of thermodynamic modeling based on the application of the Butler equation: curve 1 corresponds to N = 1480, curve 2 - N = 10,000. The dots represent the results of MD simulations of nanoparticles containing 140 (■), 1480 (●) and 10,000 (▲) atoms. The dashed line corresponds to the limiting case of no surface segregation.

Download (64KB)
3. Fig. 2. Dependences found for Pt-Pd nanoparticles of radius r0 = 1.0 nm (N = 500) by solving the Butler equation (a) and the Langmuir-MacLean equation (b). Curves 1 and points ● correspond to temperature T = 300 K, lines 2 and points ■ — to temperature T = 1000 K. The lines represent the results of thermodynamic modeling, the points — the MD results.

Download (115KB)
4. Fig. 3. Dependencies obtained as a result of thermodynamic modeling of Ni-Cr nanoparticles of radius r0 = 1.3 nm (N = 1000): curve 1 is the Butler equation, curve 2 is the Langmuir-McLean equation. Two points correspond to the experimental results [9].

Download (57KB)
5. Fig. 4. Results of MD simulation for Ni-Cr nanoparticles of radius r0 = 1.3 nm (N = 1000).

Download (210KB)

Copyright (c) 2024 Russian Academy of Sciences