Analysis of the effect of a recurrent neural network size on modeling and prediction accuracy of a stochastic FitzHugh–Nagumo neuron

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the performance of a reservoir computing-based network in dynamics forecast of a FitzHugh–Nagumo model driven by white noise versus reservoir size. We show that the accuracy of signal prediction of a model neuron strongly depends on the number of neurons in the reservoir. The most accurate prediction of both the dynamics itself and the simulation of the coherence resonance phenomenon is achieved when using 500 neurons.

作者简介

N. Kulagin

Immanuel Kant Baltic Federal University

Email: kulagin.nikita03@gmail.com
Kaliningrad, 236041 Russia

A. Andreev

Immanuel Kant Baltic Federal University

Kaliningrad, 236041 Russia

A. Hramov

Immanuel Kant Baltic Federal University

Kaliningrad, 236041 Russia

参考

  1. Hewamalage H., Bergmeir C., Bandara K. // Int. J. Forecast. 2021. V. 37. No. 1. P. 388.
  2. Salmela L., Tsipinakis N., Foi A. et al. // Nature Mach. Intell. 2021. V. 3. No. 4. P. 344.
  3. Vlachas P.R., Pathak J., Hunt B.R. et al. // Neural Networks. 2020. V. 126. P. 191.
  4. Sangiorgio M., Dercole F. // Chaos Soliton. Fract. 2020. V. 139. Art. No. 110045.
  5. Batmanova A., Kuc A., Maksimenko V. et al. // Mathematics. 2022. V. 10. No. 17. Art. No. 3153.
  6. Hodgkin A.L., Huxley A.F. // J. Physiol. 1952. V. 117. No. 4. P. 500.
  7. FitzHugh R. // Biophys J. 1961. V. 1. No. 6. P. 445.
  8. Hindmarsh J.L., Rose R.M. // Proc. Royal. Soc. Lond. B. 1984. V. 221. No. 1222. P. 87.
  9. Lee S., Neiman A., Kim S. // Phys. Rev. E. 1998. V. 57. No. 3. P. 3292.
  10. Pikovsky A.S., Kurths J. // Phys. Rev. Lett. 1997. V. 78. No. 5. P. 775.
  11. Wu S., Ren W., He K., Huang Z. // Phys. Lett. A. 2001. V. 279. No. 5-6. P. 347.
  12. Hramov A.E., Kulagin N., Andreev A.V., Pisarchik A.N. // Chaos Soliton. Fractal. 2024. V. 178. Art. No. 114354.
  13. Andreev A.V., Badarin A.A., Maximenko V.A., Hramov A.E. // Chaos. 2022. V. 32. No. 10. Art. No. 103126.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025