Investigation of the corrosion resistance of Ti40.0Ni51.0 alloy in various structural states
- 作者: Iskhakova E.I.1,2, Churakova A.A.1,2
-
隶属关系:
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Ufa University of Science and Technology
- 期: 卷 89, 编号 3 (2025)
- 页面: 425–430
- 栏目: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://vietnamjournal.ru/0367-6765/article/view/686023
- DOI: https://doi.org/10.31857/S0367676525030154
- EDN: https://elibrary.ru/GBXWMC
- ID: 686023
如何引用文章
详细
The study of the corrosion resistance of Ti49.0Ni51.0 alloy in the initial coarse-grained state and in the state after preliminary aging was carried out. 0.9% NaCl, Ringer’s solution, and Hanks’ solution were chosen as corrosive media that mimic the biological environment of the body. We obtained that corrosion occurs in all states studied with the formation of pitting and the release of corrosion products on the surface.
作者简介
E. Iskhakova
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology
Email: elmira.iskhakova.74@mail.ru
Ufa, 450075 Russia; Ufa, 450076 Russia
A. Churakova
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and TechnologyUfa, 450075 Russia; Ufa, 450076 Russia
参考
- Berger-Gorbet M., Broxup B., Rivard C., Yahia L. // J. Biomed. Mater. Res. 1996. V. 32. No. 2. P. 243.
- Elstrodt J.A., Veldhuizen A.G., Horn N.V. // Eur. Spine J. 2002. V. 11. No. 2. P. 100.
- Устинская T.H., Томашов Н.Д., Лубник Е.Н. // Электрохимия. 1987. Т. 23. С. 254.
- Коссый Г.Г., Трусов Г.Н., Гончаренко Б.А., Михеев В.С. // Защита металлов. 1978. Т. 14. № 6. С. 662.
- Чуракова А.А., Каюмова Э.М. // Наноиндустрия. 2023. Т 16. № 3–4. С. 208.
- Урбан В.И., Рубаник В.В., Рубаник мл. В.В. и др. // Физикохим. поверх. защ. матер. 2023. Т. 59. № 4. C. 444; Urban V.I., Rubanik V.V., Rubanik Jr.V.V. et al. // Prot. Met. Phys. Chem. Surf. 2023. V. 59. No. 4. P. 717.
- Sanders J.O., Sanders A.E., More R. et al. // Spine. Part. A. 1993. V. 18. P. 1640.
- Duerig Т., Pelton А., Stockel D. // Mater. Sci. Eng. Part. A. 1999. V. 273. P. 149.
- Veiga C., Davim J.P., Loureiro A.J.R. // Rev. Adv. Mater. Sci. 2012. V. 32. P. 1434.
- Filip P., Lausmaa J., Musialek J., Mazanec K. // Biomaterials. 2001. V. 22. P. 2131.
- Milosev I., Kapun B. // Mater. Sci. Eng. 2012. V. 32. P. 1068.
- Шурыгина Н.А., Глезер А.М., Дьяконов Д.Л., Сундеев Р.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 997; Shurygina N.A., Glezer A.M., Diakonov D.L., Sundeev R.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 771.
- Semin V.O., D’yachenko F.A., Erkovich A.V. et al. // Mater. Character. B. 2023. V. 206. Art. No. 113457.
- Karelin R., Komarov V., Khmelevskaya I. et al. // Mater. Sci. Eng. A. 2023. V. 872. Art. No. 144960.
- Semin V.O., Ostapenko M.G., Meisner S.N. et al. // Materialia. 2024. V. 34. Art. No. 102043.
- Huang H.H., Chiu Y.H., Lee T.H. et al. // Biomaterials. 2003. V. 24. P. 3585.
- Gitlitz P.H., Sunderman F.W., Goldblatt P.J. // Toxicol. Appl. Pharmacol. 1975. V. 34. P. 430.
- Pereira M.C., Pereira M.L., Sousa J.P. // Biomed. Mater. Res. 1998. V. 40. P. 40.
- Рыклина Е.П. // Матер. симпоз. «Перспективные материалы и технологии» (Брест, 2019). С. 411.
- Ryklina E., Murygin S., Komarov V. et al. // Metals. 2023. V. 13. No. 8. P. 1428.
- Ryklina E.P., Polyakova K.A., Resnina N.N. // Shape. Mem. Superelasticity. 2022. V. 8. P. 200.
补充文件
