Micromagnetic states and Bloch points in multilayer nanofilms: influence of anisotropy and magnetic field
- Authors: Filippova V.V.1, Gareeva Z.V.1
-
Affiliations:
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Issue: Vol 89, No 3 (2025)
- Pages: 386–391
- Section: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://vietnamjournal.ru/0367-6765/article/view/686016
- DOI: https://doi.org/10.31857/S0367676525030087
- EDN: https://elibrary.ru/FRNAPP
- ID: 686016
Cite item
Abstract
We presented a numerical simulation of the processes of magnetization reversal of an exchange-coupled magnetic nanostructure, studies micromagnetic states in the system and their transformation under the influence of an external magnetic field and shows the possibility of realizing magnetic states of the Bloch point type. The influence of magnetic anisotropy constants of the “easy plane” type on the conditions of existence and structure of topological objects is studied.
Keywords
About the authors
V. V. Filippova
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
Email: mukhamadeeva.vika@mail.ru
Ufa, 450075 Russia
Z. V. Gareeva
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
References
- Загорский Д.Л., Долуденко И.М., Чигарев С.Г. и др. // Изв. РАН. Сер. физ. 2021. T. 85. № 8. C. 1102; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 848.
- Шканакина М.Д., Кичин Г.А., Скирдков П.Т. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 2. C. 109; Shkanakina M.D., Kichin G.A., Skirdkov P.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 92.
- Акимов М.Л., Поляков П.А., Шевцов В.С. // Изв. РАН. Сер. физ. 2020. T. 84. № 5. C. 723; Akimov M.L., Polyakov P.A., Shevtsov V.S. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 596.
- Lang M., Beg M., Hovorka O., Fangohr H. // Sci. Reports. 2023. V. 13. Art. No. 6910.
- Gobel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
- Feldtkeller E. // Z. Angew. Phys. 1965. V. 19. No. 6. P. 530.
- Doring W. // J. Appl. Phys. 1968. V. 39. No. 2. P. 1006.
- Harrison C.G., Leaver K.D. // Phys. Stat. Sol. 1973. V. 15. P. 415.
- Зубов В.Е., Кринчик Г.С., Кудаков А.Д. // Письма в ЖЭТФ. 1988. T. 47. № 3. C. 134; Zubov V.E., Krinchik G.S., Kudakov A.D. // JETP Lett. 1988. V. 47. No. 1. P. 161.
- Кабанов Ю.П., Дедух Л.М., Никитенко В.И. // Письма в ЖЭТФ. 1989. V. 49. № 10. Р. 551; Kabanov Y.P., Dedukh L.M., Nikitenko V.I. // JETP Lett. 1989. V. 49. No. 10. Р. 637.
- Andreas C., Kа?kay A., Hertel R. // Phys. Rev. 2014. V. 89. No. 13. Art. No. 134403.
- Tiaville A., Garca J.M., Dittrich R. et al. // Phys. Rev. 2003. V. 67. No. 9. Art. No. 094410.
- Hertel R., Gliga S., Fahnle M., Schneider C.M. // Phys. Rev. Lett. 2007. V. 98. No. 11. Art. No. 117201.
- Wohlhuter P., Bryan M.T., Warnicke P. et al. // Nature Commun. 2015. V. 6. No. 1. Art. No. 7836.
- Hertel R., Schneider C.M. // Phys. Rev. Lett. 2006. V. 97. No. 17. Art. No. 177202.
- Beg M., Pepper R.A., Cortes-Ortuno D. et al. // Sci. Reports. 2019. V. 9. No. 1. Art. No. 7959.
- Lang M., Pathak S.A., Holt S.J.R. et al. // Sci. Reports. 2023. V. 13. No. 1. Art. No. 18934.
- Donahue M.J., Porter D.G. // OOMMF User’s Guide. Version 1.0. No. NIST IR 6376. NIST, 1999. 94 р.
- Malozemoff A.P., Slonczewski J.C. Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research. Academic Press., 2013. 334 р.
- Eschenfelder A.H. Magnetic Bubble Technology. Springer Science & Business Media, 2012. 317 р.
- Bauer J.J., Rosenberg E.R., Kundu S. et al. // Adv. Electr. Mater. 2020. V. 6. No. 1. Art. No. 1900820.
- Gareeva Z.V., Filippova V.V., Shulga N.V., Doroshenko R.A. // Phys. Chem. Chem. Phys. 2024. V. 26. No. 3. Art. No. 22164.
Supplementary files
