Analysis of local mobility of polyvinylpyrrolidone macromolecule

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An analysis of local mobility of macromolecule of polyvinylpyrrolidone is carried out by use of IR spectroscopy. The freezing temperature of local molecular mobility is determined and the type of relaxator is established. The secondary relaxation transition of polyvinylpyrrolidone is detected at the temperature of 235 K.

Texto integral

Acesso é fechado

Sobre autores

D. Kamalova

Kazan (Volga Region) Federal University

Autor responsável pela correspondência
Email: Dina.Kamalova@kpfu.ru
Rússia, Kazan

O. Kochurova

Kazan (Volga Region) Federal University

Email: Dina.Kamalova@kpfu.ru
Rússia, Kazan

Bibliografia

  1. Zhao J., Li J., Chen Q. et al. // J. Membrane Sci. 2024. V. 695. Art. No. 122389.
  2. Jiang Y., Zhao P., Xu S. et al. // Desalination. 2024. V. 585. Art. No. 117753.
  3. Кононова С.В., Губанова Г.Н., Ромашкова К.А. и др. // Высокомолек. соед. А. 2016. Т. 58. № 3. С. 282.
  4. Aili D., Kraglund M.R., Tavacoli J. et al. // J. Membrane Sci. 2020. V. 598. Art. No. 117674.
  5. Udomsin J., Prasannan A., Wang C.-F. et al. // J. Membrane Sci. 2021. V. 636. Art. No. 119568.
  6. Wang C., Song X., Liu Y., Zhang C. // J. Membrane Sci. 2021. V. 229. Art. No. 123965.
  7. Luo Y., Hong Y., Shen L. et al. // AAPS Pharm. Sci. Tech. 2021. V. 22. Art. No. 34.
  8. Liu X., Xu Y., Wu Z., Chen H. // Macromol. Biosci. 2013. V. 13. No. 2. Art. No. 147.
  9. Lu W., Shi. D., Zhang H., Li X. // J. Membrane Sci. 2021. V. 620. Art. No. 118947.
  10. Lv B., Yin H., Huang Z. et al. // J. Membrane Sci. 2022. V. 653. Art. No. 120512.
  11. Холхоев Б.Ч., Буинов А.С., Бальжинов С.А. и др. // Высокомолек. соед. А. 2017. Т. 59. № 2. С. 174.
  12. Behboudi A., Ghiasi S., Mohammadi T., Ulbricht M. // Sep. Purif. Technol. 2021. V. 270. Art. No. 118801.
  13. Turner D.T. // Polymer. 1985. V. 26. P. 757.
  14. Wu H.-D., Wu I.-D., Chang F.-C. // Polymer. 2001. V. 42. P. 555.
  15. Cerveny S., Alegría A., Colmenero J. // J. Chem. Phys. 2008. V. 128. Art. No. 044901.
  16. Shinyashiki N., Miyara M., Nakano S. et al. // J. Molec. Liquids. 2013. V. 181. P. 110.
  17. Röwekamp L., Moch K., Seren M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. Art. No. 13219.
  18. Камалова Д.И., Ремизов А.Б., Салахов М.Х. Конформационные зонды в изучении локальной подвижности полимеров. М.: Физматкнига, 2008. 160 с.
  19. Камалова Д.И., Абдразакова Л.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1731, Kamalova D.I., Abdrazakova L.R. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1471.
  20. Аскадский А.А., Хохлов А.Р. Введение в физико-химию полимеров. М.: Научный мир, 2009. 384 с.
  21. Redondo-Foj B., Cars´ı M., Ortiz-Serna P. et al. // J. Phys. D. Appl. Phys. 2013. V. 46. Art. No. 295304.
  22. Duddu S.P., Sokoloski T.D. // J. Pharm. Sci. 1995. V. 84. No. 6. P. 773.
  23. Ozaki K., Nakada M., Kunisu M. et al. // J. Molec. Liquids. 2024. V. 403. Art. No. 124822.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. IR Fourier spectrum of attenuated total internal reflection of polyvinylpyrrolidone in the region of 4000–400 cm-1.

Baixar (119KB)
3. Fig. 2. Structural formula of the monomer unit of polyvinylpyrrolidone.

Baixar (41KB)
4. Fig. 3. IR Fourier spectra of polyvinylpyrrolidone with the addition of 1,2-diphenylethane at temperatures: 173 (1), 233 (2) and 297 K (3).

Baixar (156KB)
5. Fig. 4. Dependence of the logarithm of the ratio of optical densities of conformation-sensitive absorption bands on the reciprocal temperature for 1,2-diphenylethane in polyvinylpyrrolidone.

Baixar (87KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024