Characteristics of a distributed location system with an ultra-wideband probing signal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using numerical simulations, the characteristics of an ultra-wideband distributed probing system for various network configurations are investigated and its optimal configuration is proposed. It is shown that the range and transverse coordinate resolutions in this case are determined by the characteristics of the probing pulse and can reach 2—3 centimeters, which corresponds to an effective angular resolution of several tens of microradians.

全文:

受限制的访问

作者简介

V. Kulagin

Lomonosov Moscow State University, Sternberg State Astronomical Institute

编辑信件的主要联系方式.
Email: victorvkulagin@yandex.ru
俄罗斯联邦, Moscow

V. Valuev

National Research Nuclear University MEPhI; Research Centre “Module”

Email: victorvkulagin@yandex.ru
俄罗斯联邦, Moscow; Moscow

V. Kornienko

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: victorvkulagin@yandex.ru
俄罗斯联邦, Moscow

V. Cherepenin

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: victorvkulagin@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Ghelfi P., Laghezza F., Scotti F. et al. // Nature. 2014. V. 507. P. 341.
  2. Ghelfi P., Laghezza F., Scotti F. et al. // J. Light. Technol. 2016. V. 34. No. 2. P. 500.
  3. Zhang F., Guo Q., Pan S. // Sci. Reports. 2017. V. 7. No. 1. P. 1.
  4. Xiao X., Li S., Peng S. et al. // Opt. Express. 2018. V. 26. No. 26. P. 33783.
  5. Serafino G., Scotti F., Lemb L. et al. // J. Light. Technol. 2019. V. 37. No. 2. P. 643.
  6. Pan S., Zhang Y. // J. Light. Technol. 2020. V. 38. P. 5450.
  7. Fan B., Zhang F., Ma C. et al. // IEEE Photon. Technol. Lett. 2020. V. 32. No. 21. P. 1397.
  8. Dong J., Zhang F., Jiao Z. et al. // Opt. Express. 2020. V. 28. No. 13. P. 19113.
  9. Zhang F., Guo Q., Wang Z. et al. // Opt. Express. 2017. V. 25. No. 14. P. 16274.
  10. Godrich H., Haimovich A.M., Blum R.S. // IEEE Trans. Inform. Theory. 2010. V. 56. P. 2783.
  11. Корниенко В.Н., Кулагин В.В. // Сб. тр. “Волны-2021. Физика и применение микроволн”. М., 2021. С. 13.
  12. Корниенко В.Н., Кулагин В.В. // Сб. тр. “Волны-2022. Физика и применение микроволн”. М., 2022. С. 33.
  13. Кулагин В.В., Валуев В.В., Буркитбаев Д. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. C. 49; Kulagin V.V., Valuev V.V., Burkitbaev D. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 40.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Typical type of signals (amplitude in relative units, time in seconds) at the outputs of the emitter, receiver and processing system for two closely located targets: output signal of the emitter (a), output signal of the receiver in the absence of noise (b), output signal of the receiver with noise (the signal area is highlighted by an ellipse) (c), signal at the output of the correlation processing system (d).

下载 (489KB)
3. Fig. 2. Options for the placement of the transmitting and receiving stations: the distance between the transmitter and receivers is comparable to the distance to the target (a), (b), the distance to the target is an order of magnitude greater than the distances between the transmitter and receivers (different scales along the x and y axes) (c). Blue circles are receivers, the red star is the transmitter, the green diamond is the true position of the target, the blue star (inside the diamond in Fig. b and c) is the target mark formed by the signals from the receivers.

下载 (251KB)
4. Fig. 3. Positioning error of a single target: close target (configurations in Fig. 2a and 2b) (a); distant target (configuration in Fig. 2c) (b).

下载 (134KB)
5. Fig. 4. Resolution of two close targets with the same effective scattering surface: configuration in Fig. 2a (a and b); configuration in Fig. 2c (c and d); targets located along the x-axis (a and c); targets located along the y-axis (b and d).

下载 (255KB)

版权所有 © Russian Academy of Sciences, 2024