Photophysical properties of phosphors based on 3-(1,3-benzothiazol-2-yl)-4-hydroxybenzenesulfonic acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Water-soluble organic phosphors based on 3-(1,3-benzothiazol-2-yl)-4-hydroxybenzene sulphonic acid were first studied experimentally and by density functional theory. The phosphors have differences in chemical structure. For one of them there is a large Stokes shift that results from intramolecular proton transfer in the excited state.

Full Text

Restricted Access

About the authors

E. V. Parfenova

Siberian Federal University

Author for correspondence.
Email: katrinfly@bk.ru
Russian Federation, Krasnoyarsk

N. V. Slyusarenko

Siberian Federal University

Email: katrinfly@bk.ru
Russian Federation, Krasnoyarsk

S. V. Kulagin

OLBO LLC

Email: katrinfly@bk.ru
Russian Federation, Moscow

A. V. Rogova

Siberian Federal University

Email: katrinfly@bk.ru
Russian Federation, Krasnoyarsk

F. N. Tomilin

Siberian Federal University; Kirensky Institute of Physics – a branch of Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences

Email: katrinfly@bk.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

E. A. Slyusareva

Siberian Federal University

Email: katrinfly@bk.ru
Russian Federation, Krasnoyarsk

References

  1. Sedgwick A.C., Wu L., Han H.H. et al. // Chem. Soc. Rev. 2018. V. 47. No. 23. P. 8842.
  2. Mattiello S., Sanzone A., Bruni F. et al. // Joule. 2020. V. 4. No. 9. P. 1988.
  3. Moraes E.S., Duarte L.G.T.A., Germino J.C., Atvars T.D.Z. // J. Phys. Chem. C. 2020. V. 124. No. 41. P. 22406.
  4. Болотин Б.М. // Хим. пром. сегодня. 2014. № 1. С. 18.
  5. Stoerkler T., Pariat T., Laurent A.D. et al. // Molecules. 2022. V. 27. No. 8. Art. No. 2443.
  6. Бирген Е.А., Болотин Б.М., Кукушкина М.Л., Яковлева Е.В. Бесцветные, растворимые в воде органические люминофоры. Патент РФ № 2287007, кл. C09K11/06, C07D265/14, C07D277/66. 2006.
  7. Williams A.T.R., Winfield S.A., Miller J.N. // Analyst. 1983. V. 108. No. 1290. P. 1067.
  8. Fleming G.R., Knight A.W.E., Morris J.M. et al. // J. Amer. Chem. Soc. 1977. V. 99. No. 13. P. 4306.
  9. Reynolds G.A., Drexhage K.H. // Opt. Commun. 1975. V. 13. No. 3. P. 222.
  10. Santos F.S., Ramasamy E., Ramamurthy V., Rodembusch F.S. // J. Mater. Chem. C. 2016. V. 4. No. 14. P. 2820.
  11. Lei Y.Q., Xi J.Y., Guo H., Jia R. // J. Saudi Chem. Soc. 2018. V. 22. No. 7. P. 777.
  12. Wen K., Guo X., Zhang J. // Mol. Phys. 2019. V. 117. No. 6. P. 804.
  13. Tasheh N.S., Nkungli N.K., Ghogomu J.N. // Theor. Chem. Acc. 2019. V. 138. Art. No. 100.
  14. Yin F., Fang H. // J. Mol. Struct. 2023. V. 1272. Art. No. 134123.
  15. Marques M.A.L., Gross E.K. // Annu. Rev. Phys. Chem. 2004. V. 55. P. 427.
  16. Canuto S. Solvation effects on molecules and biomolecules: computational methods and applications. Springer, 2010. 547 p.
  17. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. No. 11. P. 1347.
  18. Peach M.J.G., Benfield P., Helgaker T., Tozer D.J. // J. Chem. Phys. 2008. V. 128. No. 4. Art. No. 044118.
  19. Talsky G. Derivative spectrophotometry: low and higher order. Weinheim: VCH, 1994. 228 p.
  20. Das S.K., Krishnamoorthy G., Dogra S.K. // Canad. J. Chem. 2000. V. 78. No. 2. P. 191.
  21. Peng Y., Ye Y., Xiu X., Sun S. // J. Phys. Chem. A. 2017. V. 121. No. 30. P. 5625.
  22. Юрьева Э.И., Оштрах М.И. // Изв. РАН. Сер. физ. 2007. Т. 71. № 9. С. 1265; Yur’eva E.I., Oshtrakh M.I. // Bull. Russ. Acad. Sci. Phys. 2007. V. 71. No. 9. P. 1229.
  23. Панкратов С.А., Паршинцев А.А., Преснов Д.Е., Шорохов В.В. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 71; Pankratov S. A., Parshintsev A. A., Presnov D. E., Shorokhov V. V. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 59.
  24. Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Изв. РАН. Сер. физ. 2015. Т. 79. № 11. С. 1573; Danilenko T.N., Tatevosyan M.M., Vlasenko V.G. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 11. P. 1376.
  25. Овчинников С.Г., Антипина Л.Ю., Томилин Ф.Н., Кузубов А.А. // Письма в ЖЭТФ. 2010. Т. 91. № 9. С. 536; Ovchinnikov S.G., Antipina L.Y., Tomilin F.N., Kuzubov A.A. // JETP Lett. 2010. V. 91. No. 9. P. 490.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulae of Luminophore 1 (a) and Luminophore 2 (b)

Download (121KB)
3. Fig. 2. Absorption and fluorescence spectra of Luminophore 1 (a) and Luminophore 2 (b). Insets: phosphors in daylight (1) and under UV laser excitation (2)

Download (214KB)
4. Fig. 3. Correlation of calculated and experimental wavelengths in the absorption (1) and fluorescence (2) spectra of different tautomeric forms of Luminophore 1 (a) and Luminophore 2 (b)

Download (181KB)
5. Fig. 4. Atomic structure of Luminophore 1 for conformer 1 (a) and conformer 2 (b), the dotted line shows the interaction with the solvent. Tautomeric forms of Luminophore 2: N*-state (c) and T*-state (d); the circle marks fragments containing differences between the forms; R1, R2, R3 are substituents of the molecule; C, O, H, N and S atoms are coloured blue, red, grey, violet and yellow, respectively. Molecular orbitals for the ground (BZMO) and excited (BZMO) states of tautomers of Luminophore 2: N* - (e), T* - (f)

Download (587KB)

Copyright (c) 2024 Russian Academy of Sciences