A Theory of Large-Scale Flows of Rotating Partially Ionized Spaceand Astrophysical Plasma in the Approximation of Hall Magnetohydrodynamics
- 作者: Galstyan T.V.1,2, Koshkina D.A.1,2, Klimachkov D.A.1, Petrosyan A.S.1,2
-
隶属关系:
- Space Research Institute, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- 期: 卷 50, 编号 9 (2024)
- 页面: 1124-1140
- 栏目: SPACE PLASMA
- URL: https://vietnamjournal.ru/0367-2921/article/view/683722
- DOI: https://doi.org/10.31857/S0367292124090086
- EDN: https://elibrary.ru/DVBNTB
- ID: 683722
如何引用文章
全文:
详细
A theory of large-scale flows of rotating partially ionized space and astrophysical plasma in the approximation of the Hall magnetohydrodynamics is developed. Partially ionized rotating plasma describes large-scale processes in the exoplanetary atmospheres of hot Jupiters, the thermospheric–ionospheric system of planets and the Earth, in the protoplanetary disks, along with many other objects of heliophysics and space physics. The derived equations contain nontrivial terms describing the influence of rotation on the Hall current and ambipolar plasma diffusion in addition to the traditional Coriolis force acting upon momentum of the plasma’s center of mass. Linear flows are analyzed in the simplest case when gravity is neglected. The dispersion relations for modified Alfv.n waves, rotating fast and slow acoustic waves, along with modified whistler waves, are obtained. The slow acoustic waves represent a new type of flows driven by the Coriolis force. The fast acoustic waves correspond to conventional acoustic waves in the absence of rotation.
作者简介
T. Galstyan
Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
编辑信件的主要联系方式.
Email: galstyan.tigran@phystech.edu
俄罗斯联邦, Moscow, 117997; Dolgoprudny, Moscow oblast, 141700
D. Koshkina
Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: koshkina.da@phystech.edu
俄罗斯联邦, Moscow, 117997; Dolgoprudny, Moscow oblast, 141700
D. Klimachkov
Space Research Institute, Russian Academy of Sciences
Email: klimachkovdmitry@gmail.com
俄罗斯联邦, Moscow, 117997
A. Petrosyan
Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: apetrosy@cosmos.ru
俄罗斯联邦, Moscow, 117997; Dolgoprudny, Moscow oblast, 141700
参考
- Petrosyan A., Klimachkov D., Fedotova M., Zinyakov T. // Atmosphere. 2020. V. 11(4). P. 314. doi: 10.3390/atmos11040314.
- Fedotova M., Klimachkov D., Petrosyan A. // Universe. 2021. V. 7(4). P. 87. doi: 10.3390/universe7040087.
- Петросян А.С. Федотова М.А., Климачков Д.А. // Физика плазмы. 2023. Т. 49. С. 209. doi: 10.31857/S0367292122601229.
- Witalis E.A. // Phys. Scripta. 1987. V. 35. P. 689. doi: 10.1088/0031-8949/35/5/013.
- Ilgisonis V.I. // Plasma Phys. Control. Fusion. 2001. V. 43. P. 1255. doi: 10.1088/0741-3335/43/9/307.
- Huba J.D. // Lect. Notes. Phys. 2003. V. 615. P. 166. doi: 10.1007/3-540-36530-3_9.
- Морозов А.И. Введение в плазмодинамику. М.: Физматлит, 2006.
- Wardle P.B.P. // Mon. Not. Royal Astron. Soc. 2008. V. 385(4). P. 2269. doi: 10.1111/j.1365-2966.2008.12998.x.
- Ballester J.L., Alexeev I., Collados M., Dones T., Pfaff R.F., Gilbert H., Khodachenko M., Khomenko E., Shaikhislamov I.F., Soler R., Vázquez-Semadeni E., Zaqarashvili T. // Space Sci. Rev. 2018. V. 214. P. 1. doi: 10.1007/s11214-018-0485-6.
- Soler R., Ballester J.L. // Front. Astron. Space Sci. 2022. V. 9. P. 74. doi: 10.3389/fspas.2022.789083.
- Leake J. E., De Vore C.R., Thayer J.P., Burns A.G., Crowley G., Gilbert H.R., Huba J.D., Krall J., Linton M.G., Lukin V.S., Wang W. // Space Sci. Rev. 2014. V. 184. P. 107. doi: 10.1007/s11214-014-0103-1.
- Benavides S.J., Flierl G.R. // J. Fluid Mech. 2020. V. 900. P. A28. doi: 10.1017/jfm.2020.500.
- Khomenko E. Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory / Ed. MacTaggart D., Hillier A., 2019. P. 69. doi: 10.1007/978-3-030-16343-3_3.
- Goldreich P., Reisenegger A. // Astrophys. J 1992. V. 395. P. 250. doi: 10.1086/171646.
- Wardle M. // Mon. Not. Royal Astron. Soc. 1999. V. 307(4). P. 849. doi: 10.1046/j.1365-8711.1999.02670.x.
- Balbus S.A., Terquem C. // Astrophys. J. 2001. V. 552. P. 235. doi: 10.1086/320452.
- Dikpati M., Gilman A.P. // Astrophys. J. 2001. V. 551, P. 536. doi: 10.1086/320080.
- Wei X. // Astrophys. J. 2016. V. 828. P. 30. doi: 10.3847/0004-637X/828/1/30.
- Zaqarashvili T.V., Oliver R., Ballester J. L., Shergelashvili B.M. // Astron. Astrophys. 2007. V. 470. P. 815. doi: 10.1051/0004-6361:20077382.
- Lakhin V.P., Ilgisonis V.I. // Phys. Plasmas. 2011. V. 18(9). P. 092103. doi: 10.1063/1.3628302.
- Ильгисонис В.И. // УФН. 2009. Т. 179(7). С. 790. doi: 10.3367/UFNr.0179.200907i.0790.
- Arendt P. N. Jr. // arXiv:astro-ph/9801194v1. 1998.
- Thyagaraja A., McClements K.G. // Phys. Plasmas. 2009. V. 16(9). P. 092506. doi: 10.1063/1.3238485.
- Zawistowski Z.J., Kovivchak Ya. // Wave Motion. 2017. V. 72. P. 62. doi: 10.1016/j.wavemoti.2016.12.001.
- Ерофеев В.И., Солдатов И. Н. // Акуст. Ж. 2000. Т. 46. С. 644.
补充文件
