A Theory of Large-Scale Flows of Rotating Partially Ionized Spaceand Astrophysical Plasma in the Approximation of Hall Magnetohydrodynamics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

A theory of large-scale flows of rotating partially ionized space and astrophysical plasma in the approximation of the Hall magnetohydrodynamics is developed. Partially ionized rotating plasma describes large-scale processes in the exoplanetary atmospheres of hot Jupiters, the thermospheric–ionospheric system of planets and the Earth, in the protoplanetary disks, along with many other objects of heliophysics and space physics. The derived equations contain nontrivial terms describing the influence of rotation on the Hall current and ambipolar plasma diffusion in addition to the traditional Coriolis force acting upon momentum of the plasma’s center of mass. Linear flows are analyzed in the simplest case when gravity is neglected. The dispersion relations for modified Alfv.n waves, rotating fast and slow acoustic waves, along with modified whistler waves, are obtained. The slow acoustic waves represent a new type of flows driven by the Coriolis force. The fast acoustic waves correspond to conventional acoustic waves in the absence of rotation.

Авторлар туралы

T. Galstyan

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: galstyan.tigran@phystech.edu
Ресей, Moscow, 117997; Dolgoprudny, Moscow oblast, 141700

D. Koshkina

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: koshkina.da@phystech.edu
Ресей, Moscow, 117997; Dolgoprudny, Moscow oblast, 141700

D. Klimachkov

Space Research Institute, Russian Academy of Sciences

Email: klimachkovdmitry@gmail.com
Ресей, Moscow, 117997

A. Petrosyan

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: apetrosy@cosmos.ru
Ресей, Moscow, 117997; Dolgoprudny, Moscow oblast, 141700

Әдебиет тізімі

  1. Petrosyan A., Klimachkov D., Fedotova M., Zinyakov T. // Atmosphere. 2020. V. 11(4). P. 314. doi: 10.3390/atmos11040314.
  2. Fedotova M., Klimachkov D., Petrosyan A. // Universe. 2021. V. 7(4). P. 87. doi: 10.3390/universe7040087.
  3. Петросян А.С. Федотова М.А., Климачков Д.А. // Физика плазмы. 2023. Т. 49. С. 209. doi: 10.31857/S0367292122601229.
  4. Witalis E.A. // Phys. Scripta. 1987. V. 35. P. 689. doi: 10.1088/0031-8949/35/5/013.
  5. Ilgisonis V.I. // Plasma Phys. Control. Fusion. 2001. V. 43. P. 1255. doi: 10.1088/0741-3335/43/9/307.
  6. Huba J.D. // Lect. Notes. Phys. 2003. V. 615. P. 166. doi: 10.1007/3-540-36530-3_9.
  7. Морозов А.И. Введение в плазмодинамику. М.: Физматлит, 2006.
  8. Wardle P.B.P. // Mon. Not. Royal Astron. Soc. 2008. V. 385(4). P. 2269. doi: 10.1111/j.1365-2966.2008.12998.x.
  9. Ballester J.L., Alexeev I., Collados M., Dones T., Pfaff R.F., Gilbert H., Khodachenko M., Khomenko E., Shaikhislamov I.F., Soler R., Vázquez-Semadeni E., Zaqarashvili T. // Space Sci. Rev. 2018. V. 214. P. 1. doi: 10.1007/s11214-018-0485-6.
  10. Soler R., Ballester J.L. // Front. Astron. Space Sci. 2022. V. 9. P. 74. doi: 10.3389/fspas.2022.789083.
  11. Leake J. E., De Vore C.R., Thayer J.P., Burns A.G., Crowley G., Gilbert H.R., Huba J.D., Krall J., Linton M.G., Lukin V.S., Wang W. // Space Sci. Rev. 2014. V. 184. P. 107. doi: 10.1007/s11214-014-0103-1.
  12. Benavides S.J., Flierl G.R. // J. Fluid Mech. 2020. V. 900. P. A28. doi: 10.1017/jfm.2020.500.
  13. Khomenko E. Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory / Ed. MacTaggart D., Hillier A., 2019. P. 69. doi: 10.1007/978-3-030-16343-3_3.
  14. Goldreich P., Reisenegger A. // Astrophys. J 1992. V. 395. P. 250. doi: 10.1086/171646.
  15. Wardle M. // Mon. Not. Royal Astron. Soc. 1999. V. 307(4). P. 849. doi: 10.1046/j.1365-8711.1999.02670.x.
  16. Balbus S.A., Terquem C. // Astrophys. J. 2001. V. 552. P. 235. doi: 10.1086/320452.
  17. Dikpati M., Gilman A.P. // Astrophys. J. 2001. V. 551, P. 536. doi: 10.1086/320080.
  18. Wei X. // Astrophys. J. 2016. V. 828. P. 30. doi: 10.3847/0004-637X/828/1/30.
  19. Zaqarashvili T.V., Oliver R., Ballester J. L., Shergelashvili B.M. // Astron. Astrophys. 2007. V. 470. P. 815. doi: 10.1051/0004-6361:20077382.
  20. Lakhin V.P., Ilgisonis V.I. // Phys. Plasmas. 2011. V. 18(9). P. 092103. doi: 10.1063/1.3628302.
  21. Ильгисонис В.И. // УФН. 2009. Т. 179(7). С. 790. doi: 10.3367/UFNr.0179.200907i.0790.
  22. Arendt P. N. Jr. // arXiv:astro-ph/9801194v1. 1998.
  23. Thyagaraja A., McClements K.G. // Phys. Plasmas. 2009. V. 16(9). P. 092506. doi: 10.1063/1.3238485.
  24. Zawistowski Z.J., Kovivchak Ya. // Wave Motion. 2017. V. 72. P. 62. doi: 10.1016/j.wavemoti.2016.12.001.
  25. Ерофеев В.И., Солдатов И. Н. // Акуст. Ж. 2000. Т. 46. С. 644.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024