TRT divertor optimization in SOLPS-ITER modeling

Cover Page

Cite item

Full Text

Abstract

The analysis of possible divertor working regimes and edge plasma parameters for TRT tokamak project is performed basing on modeling. It is shown that for the separatrix power of 18 MW corresponding to approximately twice higher full input power the low divertor integral heat flux 5 MW/m2 can be provided for the separatrix plasma density lower than 7 × 1019 m–3 and the effective charge Zeff lower than 2. These parameters are realistic for this device. In case of bigger separatrix power the working regime is possible with higher divertor heat load still within the technological limits of the machine. Modeling also shows positive effect of the increase of the distance between the separatrix and the vacuum vessel structures and better performance of the corner divertor configuration comparing to the “ITER-like” one.

About the authors

P. A. Molchanov

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

P. S. Kudrevatykh

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

N. V. Shtyrkhunov

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

E. G. Kaveeva

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Author for correspondence.
Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

V. A. Rozhansky

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

I. Yu. Senichenkov

Peter the Great St. Petersburg Polytechnic University; Institution “Project Center ITER”

Email: E.Kaveeva@spbstu.ru
Russian Federation, St. Petersburg, 195251; Moscow, 123182

References

  1. Kukushkin A.S., Pshenov A.A. // Plasma Phys. Rep. 2021. V. 47. P. 1238.
  2. Kaveeva E., Rozhansky V., Veselova I., Senichenkov I., Giroud C., Pitts R., Wiesen S., Voskoboynikov S. // Nuclear Materials Energy. 2021. V. 28. P. 101030.
  3. Yu Y., Zhou D., Sakamoto M., Cao B., Zuo G., Hu J. // Nuclear Materials Energy. 2023. V. 34. P. 101333.
  4. Pitts R.A., Bonnin X., Escourbiac F., Frerichs H., Gunn J.P., Hirai T., Kukushkin A.S., Kaveeva E., Miller M.A., Moulton D., Rozhansky V., Senichenkov I., Sytova E., Schmitz O., Stangeby P.C. // Nucl. Mater. Energy. 2019. V. 20. P. 100696.
  5. Krasilnikov A.V., Konovalov S.V., Bondarchuk E.N., Mazul I.V., Rodin I.Yu., Mineev A.B., Kuzmin E.G., Kavin A.A., Karpov D.A., Leonov V.M., Khayrutdinov R.R., Kukushkin A.S., Portnov D.V., Ivanov A.A., Belchenko Yu.I. // Plasma Phys. Rep. 2021. V. 47. P. 1092.
  6. Mazul I.V., Giniyatulinv R.N., Kavin A.A., Litunovskii N.V., Makhankov A.N., Piskarev P.Yu., Tanchuk V. N. // Plasma Phys. Rep. 2021. V. 47. P. 1220.
  7. Пискарев П.Ю., Мазуль И.В., Маханьков А.Н., Колесник М.С., Окунева Е.В., Литуновский Н.В. // ВАНТ. Сер. Термоядерный синтез. 2024. Т. 47. С. 41.
  8. Bonnin X., Dekeyser W., Pitts R., Coster D., Voskoboynikov S., Wiesen S. // Plasma Fusion Res. 2016. V. 11. P. 1403102.
  9. Eich T., Goldston R.J., Kallenbach A., Sieglin B., Sun H.J., ASDEX Upgrade Team and JET Contributors // Nuclear Fusion. 2018. V. 58. P. 034001.
  10. Xu G.S., Wang L., Yao D.M., Jia G.Z., C.F. Sang, Liu X.J., Chen Y.P., Si H., Yang Z.S., Guo H.Y., Du H.L., Luo Z.P. et al.// Nuclear Fusion. 2021. V. 61. P. 126070.
  11. Pan O., Bernert M., Lunt T., Cavedon M., Kurzan B., Wiesen S., Wischmeier M., Stroth U. and the ASDEX Upgrade Team // Nuclear Fusion. 2023. V. 63. P. 016001.
  12. Senichenkov I.Yu., Poletaeva A.G., Kaveeva E.G., Veselova I.Yu., Rozhansky V.A., Coster D., Bonnin X., Pitts R.A. // Nuclear Materials and Energy. 2023. V. 34. P. 101361.
  13. Senichenkov I.Yu. Ding R., Molchanov P.A., Kaveeva E.G., Rozhansky V.A., Voskoboynikov S.P., Shtyrkhunov N.V., Makarov S.O., Si H., Liu X., Sang C., Mao S.and CFETR Team// Nuclear Fusion. 2022. V. 62. P. 096010.
  14. Sun H.J., Silburn S.A., Carvalho I.S., King D.B., Giroud C., Fishpool G., Matthews G.F., Henriques R.B., Keeling D.L., Rimini F.G. et al. // Nuclear Fusion. 2023. V. 63. P. 016021.
  15. Giraud C., Pitts R.A., Kaveeva E., Rozhansky V., Brezinsek S., Huber A., Mailloux J., Marin M., Tomes M., Veselova I., Hillesheim J. // 48th EPS Confer. on Plasma Physics and Controlled Fusion, Amsterdam 27.06–01.07.2022. https://indico.fusenet.eu/event/28/contributions/500/
  16. Ambrosino R. // Fusion Engineering and Design. 2021. V. 167. P. 112330.
  17. Rodriguez-Fernandez P., Creely A.J., Greenwald M.J., Brunner D., Ballinger S.B., Chrobak C.P., Garnier D.T., Granetz R., Hartwig Z.S., Howard N.T. et al. // Nuclear Fusion. 2022. V. 62. P. 042003.
  18. Potzel S., Wischmeier M., Bernert M., Dux R., Reimold F., Scarabosio A., Brezinsek S., Clever M., Huber A., Meigs A., Stamp M. // Journal of Nuclear Materials. 2015. V. 463. P. 541–545.
  19. Loarte A. // Plasma Phys. Control. Fusion. 2001. V. 43. P. R183.
  20. Rozhansky V., Kaveeva E., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Coster D. // Contrib. Plasma Phys. 2018. V. 58. P. 540.
  21. McCormick K., Dux R., Fischer R., Scarabosio A., the ASDEX Upgrade Team. // Journal of Nuclear Materials. 2009. V. 390–391. P. S465.
  22. Bernert M., Janky F., Sieglin B., Kallenbach A., Lipschultz B., Reimold F., Wischmeier M., Cavedon M., David P., Dunne M.G. et al. // Nuclear Fusion. 2021. V. 61. P. 024001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences