ENHANCEMENT OF THE ANTICANCER EFFECT DURING THE SIMULTANEOUS TREATMENT OF CELLS BY A COLD ATMOSPHERIC PLASMA JET AND GOLD NANOPARTICLES

Cover Page

Cite item

Full Text

Abstract

Selecting the most effective and biologically safe operation regimes of a cold atmospheric plasma jet (CAPJ) is a defining factor in developing the cancer treatments based on the CAPJ. Experimentally and numerically, by changing the pulse duration of the positive pulsed voltage, we determined the optimum CAPJ regimes with regular propagation of streamers and a maximum discharge current at a temperature T < 42∘C. In these regimes, the CAPJ appreciably suppresses the viability of the cancerous cells. It was shown that adding gold nanoparticles increases the cytotoxic effect of the plasma jet and decreases the viability of the NCI-H23 epithelioid lung adenocarcinoma, the A549 lung adenocarcinoma, the BrCCh4e-134 mammary adenocarcinoma, and the cells of the uMel1 uveal melanoma. The polyethylenglycol-modified gold nanoparticles with fluorescent labels were used to visualize the absorption of the nanoparticles by the cells. It was shown that the CAPJ stimulated the penetration of the nanoparticles into the cells when they were applied to the medium immediately before the CAPJ treatment or immediately after, which indicates a short-time increase in the permeability of the cell membrane.

About the authors

I. V. Schweigert

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences

Email: ivschweigert@gmail.com
Novosibirsk, 630090 Russia

D. E. Zakrevsky

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

E. V. Milakhina

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

P. P. Gugin

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

M. M. Biryukov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

A. A. Polyakova

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

N. V. Kryachkova

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

E. A. Gorbunova

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

A. V. Epanchintseva

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

I. A. Pyshnaya

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia

O. A. Koval

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences

Novosibirsk, 630090 Russia; Novosibirsk, 630090 Russia

References

  1. Zˇivani M., Espona-Noguera A., Lin A., Canal C. // Adv. Sci. 2023. V.10(8). P. 2205803. doi: 10.1002/advs.202205803.
  2. Limanowski R., Yan D., Li L., Keidar M. // Cancers 2022. V.14(14). P. 3461. doi: 10.3390/cancers14143461.
  3. Canady J., Murphy R., Zhuang T., Gitelis S., Nissan A., Ly L., Jones O., Cheng X., Adileh M., Blank A. et al. // Cancers. 2023. V. 15(14). P. 3688. doi: 10.3390/cancers15143688.
  4. von Woedtke T, Schmidt A, Bekeschus S, Wende K., Weltmann K.-D. // In Vivo. 2019. V. 33(4). P. 1011. doi: 10.21873/invivo.11570.
  5. Keidar M., Walk R., Shashurin A., Srinivasan P., Sandler A., Dasgupta S., Ravi R., Guerrero-Preston R., Trink B. // Brit. J. Cancer. 2011. V. 105(9). P. 1295. doi: 10.1038/bjc.2011.386.
  6. Keidar M., Shashurin A., Volotskova O., Stepp M., Srinivasan P., Sandler A., Trink B. // Phys. Plasmas. 2013. V. 20(5). P. 057101. doi: 10.1063/1.4801516
  7. Kim G., Kim G„ Park R., Jeon S., Seo H., Iza F., Lee J. // J. Phys. D: Appl. Phys. 2009. V. 42(3). P. 032005. doi: 10.1088/0022-3727/42/3/032005.
  8. Kim G.. Park S., Kim G., Lee J. // Plasma Med. 2011. V. 1(1). P. 45. doi: 10.1615/PlasmaMed.v1.i1.40.
  9. Cheng X., Murphy W., Recek N., Yan D., Cvelbar U., Vesel A., Mozetic M., Canady J., Keidar M., Sherman J. // J. Phys. D: Appl. Phys. 2014. V. 47(33). P. 335402. doi: 10.1088/0022-3727/47/33/335402.
  10. Choi B., Kim M, Song K., Kim U., Hong J., Lee J., Kim G. // J. Biomed. Nanotechnol. 2015. V. 11(5). P. 900. doi: 10.1166/jbn.2015.1999.
  11. Irani S., Shahmirani Z., Atyabi S., Mirpoor S, // Arch. Med. Sci. 2015. V. 11(6). P. 1286. doi: 10.5114/aoms.2015.48221.
  12. Choi B., Choi J., Hong J., Song K., Lee H., Kim U., Kim G. // Int. J. Med. Sci. 2017. V. 14(11). P. 1101. doi: 10.7150/ijms.20104.
  13. Kim W., Na K.-Y., Lee K.-H., Lee H, Lee J., Kim K,T, // Sci. Rep. 2017. V. 7. P. 10971. doi: 10.1038/s41598-017-11292-z.
  14. Jawaid P., Rehman M., Zhao Q.-L., Misawa M., Ishikawa K., Hori M., Shimizu T., Saitoh J.-I., Noguchi K., Kondo T. // Cell Death Discov. 2020. V. 6. P. 83. doi: 10.1038/s41420-020-00314-x.
  15. Kaushik N., Kaushik K., Yoo K, Uddin N., Kim J., Lee S., Choi E. // Biomaterials. 2016. V.87. P. 118. doi: 10.1016/j.biomaterials.2016.02.014.
  16. Schweigert I., Zakrevsky D., Gugin P., Milakhina E., Biryukov M., Keidar M., Koval O. // Plasma Sources Sci. Technol. 2022. V.31(11). P. 114004. doi: 10.1088/1361-6595/aca120.
  17. Schweigert I., Zakrevsky D., Milakhina E., Gugin P., Biryukov M., Patrakova E., Troitskaya O., Koval O. // Plasma Phys. Rep. 2023. V. 49(5). P. 595. doi: 10.1134/S1063780X2360010X.
  18. Schweigert I., Zakrevsky D., Milakhina E., Aleksandrov A., Biryukov M., Koval O. // Plasma Phys. Rep. 2023. V. 49(11). P. 1358. doi: 10.1134/S1063780X2360130X.
  19. Schweigert I., Zakrevsky Dm., Gugin P., Yelak E., Golubitskaya E., Troitskaya O., Koval O. // Appl. Sci. 2019. V. 9. P. 4528. doi: 10.3390/app9214528.
  20. Schweigert I., Alexandrov A., Zakrevsky D. // Plasma Sources Sci. Technol. 2020. V. 29(12). P. 12LT02. doi: 10.1088/1361-6595/abc93f.
  21. Schweigert I., Zakrevsky D., Milakhina E., Gugin P., Biryukov M., Patrakova E., Koval O. // Plasma Phys. Control. Fusion. 2022. V. 64(4). P. 044015. doi: 10.1088/1361-6587/ac53fl.
  22. Schweigert I., Vagapov S., Lin L., Keidar M. // J. Phys. D: Appl. Phys. 2019. V. 52(29). P. 295201. doi: 10.1088/1361-6463/ab1319.
  23. Jana N., Gearheart L., Murphy C. // Langmuir. 2001. V. 17(22). P. 6782. doi: 10.1021/la0104323.
  24. Murphy D., Eritja R., Redmond G. // Nucleic Acids Res. 2004. V. 32(7). P. e65. doi: 10.1093/nar/gnh065.
  25. Liu X., Atwater M., Wang J., Huo Q. // Colloids Surf. B. 2007. V. 58(1). P. 3. doi: 10.1016/j.colsurfb.2006.08.005.
  26. Koval O., Subrakova V., Nushtaeva A., Belovezhets T., Troitskaya O. // Genes Cells. 2019. V. 14(4). P. 66. doi: 10.23868/201912034.
  27. Patrakova E., Biryukov M., Troitskaya O., Gugin P., Milakhina E., Semenov D., Poletaeva J., Zakrevsky D., Schweigert I., Koval O. et al. // Cells. 2023. V. 12(2). P. 290. doi: 10.3390/cells12020290.
  28. Koval O., Kochneva G., Tkachenko A., Troitskaya O., Sivolobova G., Grazhdantseva A., Nushtaeva A., Kuligina E., Richter V. // Biomed. Res. Int. 2017. V. 2017. P. 3620510. doi: 10.1155/2017/3620510.
  29. Busco G., Robert E., Chettouh-Hammas N., Pouvesle J.-M., Grillon C. // Free Radic. Biol. Med. 2020. V. 161. P. 290. doi: 10.1016/j.freeradbiomed.2020.10.004.
  30. Kaneko T., Sasaki S., Hokari Y., Horiuchi S., Honda R., Kanzaki M. // Biointerphases. 2015. V. 10. P. 029521. doi: 10.1116/1.4921278.
  31. Shaw P., Kumar N., Hammerschmid D., PrivatMaldonado A., Dewilde S., Bogaerts A. // Cancers. 2019. V. 11(8). P. 1109. doi: 10.3390/cancers11081109.
  32. Yan D., Xu W., Yao X., Lin L., Sherman J., Keidar M. // Sci. Rep. 2018. V. 8. P. 15418. doi: 10.1038/s41598-018-33914-w.
  33. Kim K., Lee W. G. // J. Mater. Chem. B. 2017. V. 5. P. 2726. doi: 10.1039/C7TB00038C.
  34. Гугин П. П., Закревский Д. Э., Милахина Е. В. // Письма ЖТФ. 2021. Т. 48 (22). С. 41. doi: 10.21883/PJTF.2021.22.51726.18977.
  35. Biryukov M., Semenov D., Kryachkova N., Polyakova A., Patrakova E., Troitskaya O., Milakhina E., Zakrevsky D., Schweigert I., Koval O. et al. // Biomolecules. 2023. V. 13(11). P. 1672. doi: 10.3390/biom13111672.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences