Development of instabilities in thin aluminum foils exploded using generator with current of up to 10 kA

Cover Page

Cite item

Full Text

Abstract

The results of studying instabilities in flat aluminum 4-μm-thick foils exploded using the GVP generator with a short circuit current of 10 kA and a current rise time of 350 ns are presented. The dynamics of foil destruction during the explosion was studied using laser probing. During the experiments, it was ascertained that in the presence of the two-dimensional structure of foil, the growth rates of instabilities and their nature depend on the foil orientation relative to the direction of current flow. The conditions are cleared up, under which during the explosion of foils with two-dimensional inherent structures, the development of instabilities is slowed down.

About the authors

S. A. Pikuz

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Russian Federation, Moscow, 119991

I. N. Tilikin

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Russian Federation, Moscow, 119991

V. M. Romanova

Lebedev Physical Institute, Russian Academy of Sciences

Author for correspondence.
Email: vmr@inbox.ru
Russian Federation, Moscow, 119991

A. R. Mingaleev

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Russian Federation, Moscow, 119991

T. A. Shelkovenko

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Russian Federation, Moscow, 119991

References

  1. McBride R.D., Slutz S.A., Jennings C.A., Sinars D.B., Cuneo M.E., Herrmann M.C., Lemke R.W., Martin M.R., Vesey R.A., Peterson K.J., Sefkow A.B., Nakhleh C., Blue B.E., Killebrew K., Schroen D., Rogers J., Laspe A., Lopez M.R., Smith I.C., Atherton B.W., Savage M., Stygar W.A., and Porter J.L. // Phys. Rev. Lett. 2012. V. 109. P. 135004.
  2. Awe T.J., McBride R.D., Jennings C.A., McBride R.D., Slutz S.A., Jennings C.A., Sinars D.B., Cuneo M.E., Herrmann M.C., Lemke R.W., Martin M.R., Vesey R.A., Peterson K.J., Sefkow A.B., Nakhleh C., Blue B.E., Killebrew K., and Schroen D. // Phys. Rev. Lett. 2013. V. 111. P. 235005.
  3. McBride R.D., Slutz S.A., Vesey R.A., et al. // Phys. Plasmas. 2016. V. 23. P. 012705.
  4. Atoyan L., Hammer D.A., Kusse B.R., Byvank T., Cahill A.D., Greenly J.B., Pikuz S.A., and Shelkovenko T.A. // Phys. Plasmas. 2016. V. 23. P. 022708.
  5. Kantsyrev V.L, Chuvatin A.S., Safronova A.S. et al. // Phys. Plasmas. 2014. V. 21. P 031204.
  6. Yager-Elorriaga D.A., Zhang P., Steiner A.M., Jordan N.M., Campbell P.C., Lau Y.Y., and Gilgenbach R.M. // Phys. Plasmas. 2016. V. 23. P. 124502.
  7. Chaikovsky S.A., Datsko I.M., Labetskaya N.A., Oreshkin E.V., Oreshkin V.I., Ratakhin N.A., Rousskikh A.G., Vankevich V.A., Zhigalin A.S., and Baksht R.B. // Phys. Plasmas. 2022. V. 29. P. 103501.
  8. Grabovskii E.V., Alexandrov V.V., Branitskii A.V., et al. // Journal of Physics: IOP Conf. Ser. 2018. V. 946. P. 01204. doi: 10.1088/1742-6596/946/1/012041.
  9. Шелковенко Т.А., Пикуз С.А., Тиликин И.Н., Мингалеев А.Р., Атоян Л., Хаммер Д.А. // Физика плазмы. 2018. Т. 44. С. 193. doi: 10.1134/S1063780X18020113.
  10. Тиликин И.Н., Шелковенко Т.А., Мингалеев А.Р., Романова В.М., Пикуз С.А. // ЖЭТФ. 2019. Т. 155. С. 1115. doi: 10.1134/S0044451019060166.
  11. Shelkovenko T.A., Pikuz S.A., Tilikin I.N., Mingaleev A.R., Romanova V.M., and Hammer D.A. // J. Appl. Phys. 2020. V. 128. 205902. doi: 10.1063/5.0019330.
  12. Shelkovenko T.A., Tilikin I.N., Mingaleev A.R., and Pikuz S.A. // Phys. Plasmas. 2020. V. 27. P. 043508. doi: 10.1063/1.5133126.
  13. Shelkovenko T.A., Tilikin I.N., Pikuz S.A., Mingaleev A.R., Romanova V.M., Atoyan L., and Hammer D.A. // Matter Radiat. Extremes. 2022. V. 7. P. 055901. doi: 10.1063/5.0098333.
  14. Бурцев В.А., Калинин Н.В., Лучинский А.В. Электpический взpыв пpоводников и его пpименение в электpофизических установках. М.: Энергоатомиздат, 1990.
  15. Sedoi V.S., Mesyats G.A., Oreshkin V.I., Valevich V.V., and Chemezova L.I. // IEEE Trans. Plasma Sci. 1999. V. 27. P. 845.
  16. Takayuki M., Matsuo N., Otsuka M., and Itoh S. // Proc. SPIE 75. 2010. P. 75222.
  17. Smilowitz L., Remelius D., Suvorova N., Bowlan P., Oschwald D., and Henson. B.F. // Appl. Phys. Lett. 2019. V. 114. P. 104102.
  18. Митрофанов К.Н., Александров В.В., Грабовский Е.В., Грищук А.Н., Фролов И.Н., Вранитский А.В., Лукин Я.Н. // Физика плазмы. 2017. Т. 43. С. 367.
  19. Грабовский Е.В., Сасоров П.В., Шевелько А.П., Александров и др. // Письма в ЖЭТФ. 2016. Т. 103. С. 394.
  20. Shelkovenko T.A., Pikuz S.A., Cahill A.D., Knapp P.F., Hammer D.A., Sinars D.B., Tilikin I.N., and Mishin S.N. // Phys. Plasmas. 2010. V. 17. P. 112707. doi: 10.1063/1.3504226.
  21. Шелковенко Т.А., Пикуз С.А., Хаммер Д.А. // Физика плазмы. 2016. Т. 42. С. 234. doi: 10.7868/S0367292116030070A.
  22. Shelkovenko T.A., Pikuz S.A., Tilikin I.N., Romanova V.M., Mishin S.N., Atoyan L., and D.A. Hammer. // IEEE Trans. Plasma Sci. 2018. V. 46. P. 3741. doi: 10.1109/TPS.2018.2852063.
  23. Шелковенко Т.А., Тиликин И.Н., Огинов А.В., Перваков К.С., Мингалеев А.Р., Романовa В.М., Пикуз С.А. // Физика плазмы. 2022. Т. 48. С. 1075. doi: 10.31857/S0367292122600510.
  24. Shelkovenko T.A., Tilikin I.N., Oginov A.V., Mingaleev A.R., Romanova V.M., and Pikuz S.A. // Matter Radiat. Extremes. 2023. V. 8. P. 055601. doi: 10.1063/5.0146820

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences