Развитие представлений о клеточном электрогенезе и возбудимости и электрофизиологическая школа П.Г. Костюка
- Авторы: Колесников С.С.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Институт биофизики клетки РАН, ФИЦ ПНЦБИ РАН
- Выпуск: Том 55, № 2 (2024)
- Страницы: 49-69
- Раздел: Статьи
- URL: https://vietnamjournal.ru/0301-1798/article/view/676243
- DOI: https://doi.org/10.31857/S0301179824020051
- EDN: https://elibrary.ru/cgtswg
- ID: 676243
Цитировать
Аннотация
Становление и развитие клеточной физиологии в СССР в значительной степени ассоциируется с именем академика Платона Григорьевича Костюка, выдающегося ученого с мировым именем. Его активная научная деятельность пришлась на вторую половину ХХ в. – период бурного развития электрофизиологии, сопровождавшегося значимыми достижениями, отмеченными тремя Нобелевскими премиями. В то время электрофизиология была фактически единственной областью биологии, в которой были разработаны методы и подходы для анализа физиологических процессов в тканях и клетках в режиме реального времени. Цель данного эссе – осветить ретроспективные аспекты становления электрофизиологии и очертить вклад школы П.Г. Костюка в этот процесс.
Ключевые слова
Полный текст

Об авторах
С. С. Колесников
Федеральное государственное бюджетное учреждение науки Институт биофизики клетки РАН, ФИЦ ПНЦБИ РАН
Автор, ответственный за переписку.
Email: staskolesnikov@yahoo.com
Россия, Пущино, Московская обл., 142290
Список литературы
- Брежестовский П. Миссионер в науке // Троицкий вариант. 2010. № 54. C. 8.
- Бертолон П. Об электрической материи тела человеческого, в здоровом и болезненном состоянии. Унив. тип., у В. Окорокова. М. 1789. 454 с.
- Веселовский Н.С., Костюк П.Г., Цындренко А.Я. “Медленные” натриевые каналы в соматической мембране нейронов спинальных ганглиев новорожденных крыс // Доклады АН СССР. 1980. Т. 250. № 1. С. 216–218.
- Костюк П.Г. Микроэлектродная техника. Издательство АН УССР. Киев. 1960. 131 с.
- Костюк П.Г. Двухнейронная рефлекторная дуга. Медгиз. М. 1959. 256 с.
- Костюк П.Г. Над океаном времени. Наукова думка. Киев. 2005. 199 с.
- Крышталь O.A., Пидопличко В.П. Внутриклеточная перфузия гигантских нейронов улитки // Нейрофизиология. 1975. Т. 7. С. 327–329.
- Ajita R. Galen and his contribution to anatomy: A Review // J. Evol. Med. Dent. Sci. 2015. V.4. № 26. P. 4509–4516. https://doi.org/10.14260/jemds/2015/651
- Alexander S.P.H., Mathie A., Peters J.A. et al. The concise guide to pharmacology 2021/22: Ion channels // Br. J. Pharm. 2021. V. 178. P. S157–S245. https://doi.org/10.1111/bph.15539
- Araki T., Ito M., Kostyuk P.G., Oscarsson O., Oshima T. Injection of alkaline cations into cat spinal motoneurones // Nature 1962. V. 196. P. 1319–1320. https://doi.org/10.1038/1961319a0
- Armstrong C.M., Binstock L. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride // J. Gen. Physiol. 1965. V. 48. № 5. P. 859–872. https://doi.org/10.1085/jgp.48.5.859
- Armstrong C. Interference of injected tetra-n-propyl-ammonium bromide with outward sodium ion current in squid giant axons // Nature. 1966. V. 211. № 5945. P. 322–323. https://doi.org/10.1038/211322a0
- Armstrong C.M. Ionic pores, gates, and gating currents // Q. Rev. Biophys. 1974. V. 7. № 2. P. 179–210. https://doi.org/10.1017/s0033583500001402
- Armstrong C.M., Hollingworth S. Na+ and K+ channels: history and structure // Biophysical J. 2021. V. 120. № 5. P. 756–763. https://doi.org/10.1016/j.bpj.2021.01.013
- Bean R.C., Shepherd W.C., Chan H. et al. Discrete conductance fluctuations in lipid bilayer protein membranes // J. Gen. Physiol. 1969. V. 53. № 6. P. 741–757. https://doi.org/10.1085/jgp.53.6.741
- Beeler G.W., Jr., Reuter H. Membrane calcium current in ventricular myocardial fibres // J. Physiol. 1970. V. 207. № 1. P. 191–209. https://doi.org/10.1113/jphysiol.1970.sp009056
- Belan P., Kostyuk P., Snitsarev V., Tepikin A. Calcium clamp in isolated neurons of the snail Helix pomatia // J. Physiol. 1993. V. 462. P. 47–58. https://doi.org/10.1113/jphysiol.1993.sp019542
- Benham C.D., Tsien R.W. A novel receptor-operated Ca-permeable channel activated by ATP in smooth muscle // Nature 1987. V. 328. № 6127. P. 275–278. https://doi.org/10.1038/328275a0
- Bezanilla F. Ion channels: From conductance to structure // Neuron 2008. V. 60. № 3. P. 456–468. https://doi.org/10.1016/j.neuron.2008.10.035
- Burnstock G., Campbell G., Bennett M., Holman M.E. Inhibition of the smooth muscle of the taenia coli // Nature 1963. V. 200. P. 581–582. https://doi.org/10.1038/200581a0
- Burnstock G. Purinergic signalling: from discovery to current developments // Exp. Physiol. 2014. V. 99. № 1. P. 16–34. https://doi.org/10.1113/expphysiol.2013.071951
- Carmeliet E. From Bernstein’s rheotome to Neher-Sakmann’s patch electrode. The action potential // Physiol. Rep. 2019. V. 7. № 1. e13861.
- Cobb M. Timeline: Exorcizing the animal spirits: Jan Swammerdam on nerve function // Nature Rev. Neurosci. 2002. V. 3. № 5. P. 395–400. https://doi.org/10.1038/nrn806
- Cohen I.B. Benjamin Franklin’s experiments. Harvard University Press. Cambridge. 1941. 451 p.
- Cole, K.S., Curtis H.J. Electric impedance of the squid giant axon during activity // J. Gen. Physiol. 1939. V. 22. № 5. P. 649–670. https://doi.org/10.1085/jgp.22.5.649
- Cole K.S. Dynamic electrical characteristics of the squid axon membrane // Arch. Sci. Physiol. 1949. V. 3. P. 253–258.
- Conti F., Wanke E. Channel noise in nerve membranes and lipid bilayers // Q. Rev. Biophys. 1975. V. 8. № 4. P. 451–506. https://doi.org/10.1017/s0033583500001967
- Curtis H.J., Cole K.S. Membrane action potentials from the squid giant axon // J. Cell. Comp. Physiol. 1940. V. 15. № 2. P. 147–157. https://doi.org/10.1002/JCP.1030150204
- Danielli J.F., Davson H. A contribution to the theory of permeability of thin films // J. Cell. Comp. Physiol. 1935. V. 5. № 4. P. 495–508. https://doi.org/10.1002/jcp.1030050409
- Eccles J.C., Kostyuk P.G., Schmidt R.F. Central pathways responsible for depolarization of primary afferent fibres // J. Physiol. 1962. V. 161. № 2. P. 237–257. https://doi.org/10.1113/jphysiol.1962.sp006884
- Eccles J.C., Kostyuk P.G., Schmidt R.F. Presynaptic inhibition of the central actions of flexor reflex afferents // J. Physiol. 1962. V. 161. P. 258–281. https://doi.org/10.1113/jphysiol.1962.sp006885
- Fatt P, Katz B. The electrical properties of crustacean muscle fibres // J. Physiol. 1953. V. 120. № 1–2. P. 171–204. https://doi.org/10.1113/jphysiol.1953.sp004884
- Fatt P., Ginsborg B.L. The ionic requirements for the production of action potentials in crustacean muscle fibres // J. Physiol. 1958. V. 142. № 3. P. 516–543. https://doi.org/10.1113/jphysiol.1958.sp006034
- Fedulova S.A., Kostyuk P.G., Veselovsky N.S. Calcium channels in the somatic membrane of the rat dorsal root ganglion neurons, effect of cAMP // Brain Res. 1981. V. 214. № 1. P. 210–214. https://doi.org/10.1016/0006-8993(81)90457-1
- Finkelstein G. Mechanical neuroscience: Emil du Bois-Reymond’s innovations in theory and practice // Front. Syst. Neurosci. 2015. V. 9. P. 133. https://doi.org/10.3389/fnsys.2015.00133
- Galvani L. De viribus electricitatis in motu musculari. Commentarius. (Commentary on the effects of electricity on muscular motion). De Bononiesi Scientarium et Ertium Instituto atque // Academia Commentarii. 1791. V. 7. P. 363–418.
- Geduldig D., Junge D. Sodium and calcium components of action potential in the Aplisia giant neurone // J. Physiol. 1968. V. 199. № 2. P. 347–365. https://doi.org/10.1113/jphysiol.1968.sp008657
- Geduldig D., Gruener R. Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents // J. Physiol. 1970. V. 211. № 1. P. 217–244. https://doi.org/10.1113/jphysiol.1970.sp009276
- Gerasimov V.D., Kostyuk, P.G., Maiskii V.A. The influence of divalent cations on the electrical characteristics of membranes of giant neurons // Biofizika 1965. V. 10. P. 447–453.
- González C., Baez-Nieto D., Valencia I., Oyarzún I. et al. K+ channels: function-structural overview // Compr. Physiol. 2012. V. 2. № 3. P. 2087–2149. https://doi.org/10.1002/cphy.c110047
- Gorter E., Grendel F. On bimolecular layers of lipids on the chromocytes of the blood // J. Exp. Med. 1925. V. 41. № 4. P. 439–443. https://doi.org/10.1084/jem.41.4.439
- Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions // J. Gen. Physiol. 1966. V. 49. № 4. P. 793–806. https://doi.org/10.1085/jgp.49.4.793
- Hales S. Statical essays: containing haemastaticks. V. 2. W. Innys et al. London. 1733.
- Hamill O., Marty A., Neher E., Sakmann B., Sigworth F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches // Pflügers Arch. 1981. V. 391. № 2. P. 85–100. https://doi.org/10.1007/BF00656997
- Hunter J. Anatomical Observations on the Torpedo // Philosoph. Transac. 1773. V. 63. P. 481–489. https://doi.org/10.1098/rstl.1773.0040
- Hille B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion // J. Gen. Physiol. 1967. V. 50. № 5. P. 1287–1302. https://doi.org/10.1085/jgp.50.5.1287
- Hille B. Pharmacological modifications of the sodium channels of frog nerve // J. Gen. Physiol. 1968. V. 51. № 2. P. 199–219. https://doi.org/10.1085/jgp.51.2.199
- Hille B. Ionic channels in nerve membranes // Prog. Biophys. Mol. Biol. 1970. V. 21. P. 1–32. https://doi.org/10.1016/0079-6107(70)90022-2
- Hille B. The permeability of the sodium channel to organic cations in myelinated nerve // J. Gen. Physiol. 1971. V. 58. № 6. P. 599–619. https://doi.org/10.1085/jgp.58.6.599
- Hille B. The permeability of the sodium channel to metal cations in myelinated nerve // J. Gen. Physiol. 1972. V. 59. № 6. P. 637–658. https://doi.org/10.1085/jgp.59.6.637
- Hille B. Ion channels of excitable membranes (3rd ed). Sinauer. Sunderland (Mass). 2001. 814 p.
- Hladky S.B., Haydon D.A. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics // Nature 1970. V. 225. № 5231. P. 451–453. https://doi.org/10.1038/225451a0
- Hodgkin A.L., Huxley A.F. Action potentials recorded from inside a nerve fibre // Nature 1939. V. 144. P. 710–711. https://doi.org/10.1038/144710A0
- Hodgkin A.L., Huxley A.F., Katz B. Ionic currents underlying activity in the giant axon of the squid // Arch. Sci. Physiol. 1949. V. 3. P. 129–150.
- Hodgkin A.L., Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid // J. Physiol. 1949. V. 108. № 1. P. 37–77. https://doi.org/10.1113/jphysiol.1949.sp004310
- Hodgkin A.L. The ionic basis of electrical activity in nerve and muscle // Biol. Rev. 1951. V. 26. № 4. P. 339–409. https://doi.org/10.1111/j.1469-185X.1951.tb01204.x
- Hodgkin A.L., Huxley A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo // J. Physiol. 1952. V. 116. № 4. P. 449–472. https://doi.org/10.1113/jphysiol.1952.sp004717
- Hodgkin A.L., Huxley A.F. The components of membrane conductance in the giant axon of Loligo // J. Physiol. 1952. V. 116. № 4. P. 473–496. https://doi.org/10.1113/jphysiol.1952.sp004718
- Hodgkin A.L., Huxley A.F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo // J. Physiol. 1952. V. 116. № 4. P. 497–506. https://doi.org/10.1113/jphysiol.1952.sp004719
- Hodgkin A.L., Huxley A.F. Movement of sodium and potassium ions during nervous activity // Cold Spring Harb Symp Quant Biol 1952. V. 17. P. 43–52. https://doi.org/10.1101/SQB.1952.017.01.007
- Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. V. 117. № 4. P. 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
- Hodgkin A.L., Huxley A.F. Propagation of electrical signals along giant nerve fibers // Proc. R. Soc. Lond. B Biol. Sci. 1952. V. 140. № 899. P. 177–183. https://doi.org/10.1098/rspb.1952.0054
- Islam M.S. Calcium signaling: From basic to bedside // Adv. Exp. Med. Biol. 2020. V. 1131. P. 1–6. https://doi.org/10.1007/978-3-030-12457-1_1
- Katz B. Mechanisms of synaptic transmission // Rev. Mod. Phys. 1959. V. 31. № 2. P. 524–531. https://doi.org/10.1103/RevModPhys.31.524
- Katz B., Miledi R. Ionic requirements of synaptic transmitter release // Nature 1967. V. 215. № 5101. P. 651. https://doi.org/10.1038/215651a0
- Katz B., Miledi R. The role of calcium in neuromuscular facilitation // J. Physiol. 1968. V. 195. № 2. P. 481–492. https://doi.org/10.1113/jphysiol.1968.sp008469
- Kostyuk P.G., Krishtal O.A., Doroshenko P.A. Calcium currents in snail neurones. I. Identification of calcium current // Pflugers Arch. 1974. V. 348. № 2. P. 83–93. https://doi.org/10.1007/BF00586471
- Kostyuk P.G., Krishtal O.A., Doroshenko P.A. Calcium currents in snail neurones. II. The effect of external calcium concentration on the calcium inward current // Pflugers Arch. 1974. V. 348. № 2. P. 95–104. https://doi.org/10.1007/BF00586472
- Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Effects of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells // Nature 1975. V. 257. № 5528. P. 691–693. https://doi.org/10.1038/257691a0
- Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride // Nature 1977. V. 267. № 5606. P. 70–72. https://doi.org/10.1038/267070a0
- Kostyuk P.G., Krishtal O.A., Shakhovalov Y.A. Separation of sodium and calcium currents in the somatic membrane of mollusc neurons // J. Physiol. 1977. V. 270. № 3. P. 545–568 https://doi.org/10.1113/jphysiol.1977.sp011968
- Kostyuk P.G., Veselovsky N.S., Fedulova S.A. Ionic currents in the somaticmembrane of rat dorsal root ganglion neurons-II. Calcium currents // Neurosci. 1981. V. 6. № 5. 2431–2437. https://doi.org/10.1016/0306-4522(81)90090-7
- Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Intracellular perfusion // J. Neurosci. Methods 1981. V. 4. № 3. P. 201–210. https://doi.org/10.1016/0165-0270(81)90032-7
- Kostyuk P.G., Veselovsky N.S., Tsyndrenko A.Y. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-I. Sodium currents // Neurosci. 1981. V. 6. № 2. P. 2423–2430. https://doi.org/10.1016/0306-4522(81)90088-9
- Kostyuk P.G. Metabolic control of ionic channels in the neuronal membrane // Neurosci. 1984. V. 3. № 4. P. 983–989. https://doi.org/10.1016/0306-4522(84)90282-3
- Kostyuk P.G. Intracellular perfusion of nerve cells and its effects on membrane currents // Physiol. Rev. 1984. V. 64. № 2. P. 435–454. https://doi.org/10.1152/physrev.1984.64.2.435
- Kostyuk P.G., Belan P.V., Tepikin A.V. Free calcium transients and oscillations in nerve cells // Exp. Brain Res. 1991. V. 83. № 2. P. 459–464. https://doi.org/10.1007/BF00231173
- Kostyuk P.G., Kirischuk S.I. Spatial heterogeneity of caffeine- and inositol 1,4,5-trisphosphate-induced Ca2+ transients in isolated snail neurons // Neurosci. 1993. V. 53. № 4. P. 943–947. https://doi.org/10.1016/0306-4522(93)90479-y
- Kostyuk P., Verkhratsky A. Calcium signalling in the nervous system. Wiley &Sons. Chichester, 1995. 220 p.
- Krishtal O.A., Magura I.S. Calcium ions as inward current carriers in mollusk neurons // Comp. Biochem. Physiol. 1970. V. 85. № 4. P. 857–866. https://doi.org/10.1016/0010-406x(70)90080-0
- Krishtal O.A., Pidoplichko V.I. A receptor for protons in the nerve cell membrane // Neurosci. 1980. V. 5. № 12. P. 2325–2327. https://doi.org/10.1016/0306-4522(80)90149-9
- Krishtal O.A., Pidoplichko V.I. A receptor for protons in the membrane of sensory neurons may participate in nociception // Neurosci. 1981. V. 6. № 12. P. 2599–2601. https://doi.org/10.1016/0306-4522(81)90105-6
- Krishtal O.A., Marchenko S.M., Obukhov A.G. Cationic channels activated by extracellular ATP in rat sensory neurons // Neurosci. 1988. V. 27. № 3. P. 995–1000. https://doi.org/10.1016/0306-4522(88)90203-5
- Kruger L.C., Isom L.L. Voltage-Gated Na+ Channels: Not just for conduction. Cold Spring Harb // Perspect. Biol. 2016. V. 8. № 6. a02926. https://doi.org/10.1101/cshperspect.a029264
- Ling G.N., Gerard R.W. The normal membrane potential of frog sartorius fibers // J. Cell. Comp. Physiol. 1949. V. 34. № 3. P. 383–396. https://doi.org/10.1002/jcp.1030340304
- Magura I.S. Action potentials of the mollusc giant neurons in solutions with a change in sodium and calcium concentrations // Neurophysiol. 1969. V. 1. P. 109–117. https://doi.org/10.1113/jphysiol.1968.sp008657
- Marmont G. Studies on the axon membrane; a new method // J. Cell. Comp. Physiol. 1949. V. 34. № 3. P. 351–382. https://doi.org/10.1002/jcp.1030340303
- Miller C. Ion Channel Reconstitution. Springer New York, New York, 1984. 577 p. https://doi.org/10.1007/978-1-4757-1361-9
- Mueller P., Rudin D.O., Tien H.T., Wescott W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system // Nature. 1962. V. 194. P. 979–980. https://doi.org/10.1038/194979a0
- Mueller P., Rudin D.O. Induced excitability in reconstituted cell membrane structure // J. Theor. Biol. 1963. V. 4. № 3. P. 268–280. https://doi.org/10.1016/0022-5193(63)90006-7
- Nakajo K., Kasuya G. Modulation of potassium channels by transmembrane auxiliary subunits via voltage-sensing domains // Physiol. Rep. 2024. V. 12. № 6. e15980. https://doi.org/10.14814/phy2.15980
- Narahashi T.J., Moore J.W., Scott W.R. Tetrodotoxin blockage of sodium conductance increase in lobster giant axon // J. Gen. Physiol. 1964. V. 47. № 5. P. 965–974. https://doi.org/10.1085/jgp.47.5.965
- Neher E., Lux H.D. Voltage clamp on Helix pomatia neuronal membrane; current measurement over a limited area of the soma surface // Pflugers Arch. 1969. V. 311. № 3. P. 272-277. https://doi.org/10.1007/BF00590532
- Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres // Nature. 1976. V. 260. № 5554. P. 799–802. https://doi.org/10.1038/260799a0
- Neher E., Sakmann B., Steinbach J.H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes // Pflugers Arch. 1978. V. 375. № 2. P. 219–228. https://doi.org/10.1007/BF00584247
- Newton I. Principia Mathematica. Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World: translated into English by Andrew Motte in 1729. University of California Press. Berkeley. 1934. 680 p.
- Nilius B. Pflügers Archiv and the advent of modern electrophysiology. From the first action potential to patch clamp // Pflugers Arch. 2003. V. 447. P. 267–271. https://doi.org/10.1007/s00424-003-1156-2
- Pattison L.A., Callejo G., St. John. Smith. E. Evolution of acid nociception: ion channels and receptors for detecting acid // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019. V. 374. № 1785. 20190291. https://doi.org/10.1098/rstb.2019.0291
- Piccolino M. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani // Brain Res. Bull. 1998. V. 46. № 5. P. 381–407. https://doi.org/10.1016/s0361-9230(98)00026-4
- Piccolino M. A “Lost time” between science and literature: the “Temps Perdu” from Hermann von Helmholtz to Marcel Proust // Audiologic. Med. 2009. V. 1. № 4. P. 261–270. https://doi.org/10.1080/16513860310023218
- Purves R.D. Ed. Microelectrode methods for intracellular recording and ionophoresis. Academic Press, London. 1981. 146 p. https://doi.org/10.1113/expphysiol.1982.sp002669
- Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration // J. Physiol. 1967. V. 192. № 2. P. 479–492. https://doi.org/10.1113/jphysiol.1967.sp008310
- Rojas E., Armstrong C. Sodium conductance activation without inactivation in pronase-perfused axons // Nature: New Biology. 1971. V. 229. № 6. P. 177–178. https://doi.org/10.1038/newbio229177a0
- Rougier O., Vassort G., Garnier D., Gargouil Y.M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential // Pflugers Arch. 1969. V. 308. № 2. P. 91–110. https://doi.org/10.1007/BF00587018
- Sakmann B., Neher E. Eds. Single channel recording. Second edition. Plenum Press, New York, 1995. 700 p. https://doi.org/10.1007/978-1-4419-1229-9
- Sanchez-Sandoval A.L., Hernández-Plata E., Gomora J.C. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets // Front. Pharmacol. 2023. V. 14. 1206136. https://doi.org/10.3389/fphar.2023.1206136
- Storozhuk M., Cherninskyi A., Maximyuk O. Isaev D., Krishtal O. Acid-sensing ion channels: Focus on physiological and some pathological roles in the brain // Curr. Neuropharmacol. 2021. V. 19. № 9. P. 1570–1589. https://doi.org/10.2174/1570159X19666210125151824
- Tasaki I., Hagiwar A.S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride // J. Gen. Physiol. 1957. V. 40. № 6. P. 859–885. https://doi.org/10.1085/jgp.40.6.859
- Verkhratsky A., North A.R., Petersen O.H., Krishtal O. In memoriam: Platon Kostyuk (1924–2010) // Cell Calcium. 2010. V. 44. № 1. P. 91–93. https://doi.org/10.1016/j.ceca.2010.07.003
- Volta A. On the electricity excited by the mere contact of conducting substances of different kinds // Philosophical Transactions of the Royal Society of London. 1800. P. 403–431. https://doi.org/10.1098/rstl.1800.0018
- Waldmann R., Champigny G., Bassilana F. Heurteaux, C., Lazdunski, M. A proton-gated cation channel involved in acid-sensing // Nature. 1997. V. 386. № 6621. P. 173–177. https://doi.org/10.1038/386173a0
- Walsh J. Of the Electric Property of the Torpedo // Philosophical Transactions. 1773. V. 63. P. 461–480. https://doi.org/10.1098/rstl.1773.0039
- Young J.Z. Structure of nerve fibres and synapses in some invertebrates // Cold Spring Harbor Symp. Quant. Biol. 1936. V. 4. № 5. P. 1–6. https://doi.org/10.1101/SQB.1936.004.01.001
- Xu L., Ding X., Wang T. Mou S., Sun H., Hou T. Voltage-gated sodium channels: structures, functions, and molecular modeling // Drug Discovery Today. 2019. V. 24. № 7. P. 1389–1397. https://doi.org/10.1016/j.drudis.2019.05.014
- Zhu Y., Hu X., Wang L. Zhang J., Pan X., Li Y. et al. Recent advances in acid-sensitive ion channels in central nervous system diseases // Curr. Pharm. Des. 2022. V. 28. № 17. P. 1406–1411. https://doi.org/10.2174/1381612828666220422084159
Дополнительные файлы
