Сиртуины и их роль в регуляции метаболизма мультипотентных мезенхимальных стромальных клеток

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сиртуины – белки семейства гистоновых деацетилаз, вовлеченные в эпигенетическую регуляцию различных клеточных функций. В данном обзоре на основании имеющихся литературных данных проведен анализ функций сиртуинов в мультипотентных мезенхимальных стромальных клетках (ММСК). Данные белки играют весьма важную роль в энергетическом обмене, дифференцировке, старении ММСК. Показана их роль в защите от окислительного стресса. Описано участие сиртуинов в специфичной для ММСК регуляции генов.

Полный текст

Доступ закрыт

Об авторах

М. В. Лобанова

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН

Автор, ответственный за переписку.
Email: pogodina_m@mail.ru
Россия, 123007, Москва

Л. Б. Буравкова

Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН

Email: buravkova@imbp.ru
Россия, 123007, Москва

Список литературы

  1. Андреева Е.Р., Матвеева Д.К., Жидкова О.В., Буравкова Л.Б. Внеклеточный матрикс как фактор регуляции физиологического микроокружения клетки // Успехи физиологических наук. 2024. Т. 55. № 1. C. 16–30. https://doi.org/10.31857/S0301179824010033
  2. Андреева Е.Р., Погодина М.В., Буравкова Л.Б. Гипоксический стресс как индуктор активации потенциала мультипотентных мезенхимальных стромальных клеток // Физиология человека. 2015. Т. 41. № 2. С. 123–129. https://doi.org/10.7868/S0131164615020022
  3. Лобанова М.В., Ратушный А.Ю., Буравкова Л.Б. Экспрессия генов, ассоциированных со старением, в мультипотентных мезенхимальных стромальных клетках при длительном культивировании в условиях разного содержания кислорода // Доклады академии наук. 2016. Т. 470. № 2. С. 227–229. https://doi.org/10.7868/S0869565216260236
  4. Пухальская А.Э., Дятлова А.С., Линькова Н.С., Кветной И.М. Сиртуины: роль в регуляции окислительного стресса и патогенезе нейродегенеративных заболеваний // Успехи физиологических наук. 2021. T. 52. № 1. C. 90–104. https://doi.org/10.31857/S0301179821010082
  5. Alves H., Munoz-Najar U., De Wit J. et al. A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells // J Cell Mol Med. 2010. V. 14. № 12. P. 2729–2738. https://doi.org/ 10.1111/j.1582-4934.2009.00931.x
  6. Bajek A., Czerwinski M., Olkowska J. et al. Does aging of mesenchymal stem cells limit their potential application in clinical practice? // Aging Clin. Exp. Res. 2012. V. 24. P. 404–411. https://doi.org/10.3275/8424
  7. Balestrieri M., Rizzo M., Barbieri M. et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. // Diabetes. 2015. V. 64. P. 1395–1406. https://doi.org/10.2337/db14-1149
  8. Bäckesjö C., Li Y., Haldosen L. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. // JBMR. 2006. V. 21. № 7. P. 993–1002. https://doi.org/10.1359/jbmr.060415
  9. Bernhardt A., Jamil A., Morshed M.T. et al. Oxidative stress and regulation of adipogenic differentiation capacity by sirtuins in adipose stem cells derived from female patients of advancing age // Sci Rep. 2024. № 14. P. 19885. https://doi.org/10.1038/s41598-024-70382-x
  10. Bi S., Liu Z., Wu Z. et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. // Protein Cell. 2020. V. 11. № 7. P. 483–504. https://doi.org/10.1007/s13238-020-00728-4
  11. Brunet A., Sweeney L., Sturgill J. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. // Science. 2004. V. 303. P. 2011–2015. https://doi.org/10.1126/science.1094637
  12. Buhrmann C., Busch F., Shayan P., Shakibaei M. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. // J Biol Chem. 2014. V. 289. № 32. P. 22048–62. https://doi.org/10.1074/jbc.M114.568790
  13. Carrico C., Meyer J.G., He W., Gibson B.W., Verdin E. The Mitochondrial Acylome Emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. // Cell Metab. 2018. V. 27. № 3. P. 497–512. https://doi.org/ 10.1016/j.cmet.2018.01.016
  14. Chang W., Lee C.Y., Park J.H. et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. // J Vet Sci. 2013. V. 14. № 1. P. 69–76. https://doi.org/10.4142/jvs.2013.14.1.69
  15. Chen C., Zhou M., Ge Y., Wang X. SIRT1 and aging related signaling pathways. // Mech Ageing Dev. 2020. V. 187. P. 111215. https://doi.org/10.1016/j.mad.2020.111215
  16. Chen E., Zhang W., Ye C. et al. Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the Wnt/β-catenin signaling pathway // Cell Death Dis. 2017. V. 8. № 9. P. e3042. https://doi.org/10.1038/cddis.2017.429
  17. Chen H., Liu X., Zhu W. et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin // Front Aging Neurosci. 2014. V. 3. № 6. P. 103. https://doi.org/10.3389/fnagi.2014.00103
  18. Chen Q., Hao W., Xiao C. et al. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion // Cell Rep. 2017. V. 18. P. 3155–3166. https://doi.org/10.1016/j.celrep.2017.03.006
  19. Chen X.H., Shi Z.G., Lin H.B. et al. Resveratrol alleviates osteoporosis through improving the osteogenic differentiation of bone marrow mesenchymal stem cells // Eur Rev Med Pharmacol Sci. 2019. V. 23. № 14. P. 6352–6359. https://doi.org/10.26355/eurrev_201907_18459
  20. Choo K.B., Tai L., Hymavathee K.S. et al. Oxidative stress-induced premature senescence in Wharton's jelly-derived mesenchymal stem cells // Int. J. Med. Sci. 2014. V. 11. № 11. P. 1201–1207. https://doi.org/10.7150/ijms.8356
  21. Dayem A.A., Choi H.-Y., Kim, J.-H., Cho S.-G. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells // Cancers. 2010. V. 2. P. 859–884. https://doi.org/10.3390/cancers2020859
  22. Denu A., Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity // Free Radic Biol Med. 2021. V. 167. P. 193–200. https://doi.org/10.1016/j.freeradbiomed.2021.02.042
  23. Denu R.A. SIRT3 Enhances Mesenchymal Stem Cell Longevity and Differentiation // Oxid Med Cell Longev. 2017. P. 5841716. https://doi.org/10.1155/2017/5841716
  24. Dhar S., Tangpong J., Chaiswing L., Oberley T., Clair D. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages // Cancer Res. 2011. V. 71. № 21. P. 6684–6695. https://doi.org/10.1158/0008-5472.CAN-11-1233
  25. Ding Y., Yang H., Wang Y. et al. Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1α-SOD2-mediated regulation of mitochondrial function // Int. J. Biol. Sci. 2017. V. 13. P. 254–264. https://doi.org/10.7150/ijbs.17053
  26. D'Onofrio N., Servillo L., Giovane A. Ergothi-oneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6 // Free Radic Biol Med. 2016. V. 96. P. 211–222. https://doi.org/10.1016/j.freeradbiomed.2016.04.013
  27. Du J., Zhou Y., Su X. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. // Science. 2011. V. 334. P. 806–809. https://doi.org/10.1126/science.1207861
  28. Ferber E., Peck B., Delpuech O. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression // Cell Death Differ. 2012. V. 19. № 6. P. 968–979. https://doi.org/10.1038/cdd.2011.179
  29. Finkel T., Deng C.-X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins // Nature. 2009. V. 460. № 7255. P. 587–591. https://doi.org/10.1038/nature08197
  30. Frye R. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins // Biochem Biophys Res Commun. 2000. V. 273. № 2. P. 793–798. https://doi.org/10.1006/bbrc.2000.3000
  31. Gomes P., Outeiro T., Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism // Trends Pharmacol Sci. 2015. V. 36. P. 756–768. https://doi.org/10.1016/j.tips.2015.08.001
  32. Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process // Biogerontology. 2017. V. 18. P. 447–476. https://doi.org/10.1007/s10522-017-9685-9.
  33. Haigis M.C., Mostoslavsky R., Haigis K.M. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells // Cell. 2006. V. 126. P. 941–954. https://doi.org/ 10.1016/j.cell.2006.06.057
  34. Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance // Annu Rev Pathol. 2010. V. 5. P. 253–295. https://doi.org/ 10.1146/annurev.pathol.4. 110807.092250
  35. Hirschey M.D. Old enzymes, new tricks: sirtuins are NAD+-dependent de-acylases // Cell Metab. 2011. V. 14. № 6. P. 718–719. https://doi.org/10.1016/j.cmet.2011.10.006
  36. Houtkooper R.H., Pirinen E., Auwerx J. Sirtuins as regulators of metabolism and healthspan // Nat Rev Mol Cell Biol. 2012. V. 13. № 4. P. 225–238. https://doi.org/ 10.1038/nrm3293
  37. Hsu Y.C., Wu Y.T., Yu T.H., Wei Y.H. Mito-chondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer // Semin. Cell Dev. Biol. 2016. V. 52. P. 119–131. https://doi.org/10.1016/j.semcdb.2016.02.011
  38. Iwahara T., Bonasio R., Narendra V., Reinberg D. SIRT3 functions in the nucleus in the control of stress-related gene expression // Mol Cell Biol. 2012. V. 32. № 24. P. 5022–34. https://doi.org/10.1128/MCB.00822-12
  39. Jacobs K.M., Pennington J.D., Bisht K.S. et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression // Int. J. Biol. Sci. 2008. V. 4. P. 291–299. https://doi.org/10.7150/ijbs.4.291.
  40. Jaiswal А., Xudong Z., Zhenyu J., Saretzki G. Mitochondrial sirtuins in stem cells and cancer // The FEBS Journal. 2021. V. 289. № 12. P. 3393–3415. https://doi.org/10.1111/febs.15879
  41. Jia B., Chen J., Wang Q. et al. SIRT6 Promotes Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells Through Antagonizing DNMT1 // Front Cell Dev Biol. 2021. V. 22. № 9. P. 648627. https://doi.org/10.3389/fcell.2021.648627
  42. Jing E., Gesta S., Kahn C.R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation // Cell Metab. 2007. V. 6. № 2. P. 105–114. https://doi.org/10.1016/j.cmet.2007.07.003
  43. Kaufmann T., Kukolj E., Brachner A. et al. SIRT2 regulates nuclear envelope reassembly through ANKLE2 deacetylation // J Cell Sci. 2016. V. 129. P. 4607–4621. https://doi.org/10.1242/jcs.192633
  44. Kim J.H., Park S.H., Park S.G. et al. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells // Stem Cells Dev. 2011. V. 20. № 10. P. 1753–61. https://doi.org/10.1089/scd.2010.0469
  45. Kiran S., Anwar T., Kiran M., Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin! // Cell Signal. 2015. V. 27. P. 673–682. https://doi.org/10.1016/j.cellsig.2014.11.026
  46. Ko E., Lee K.Y., Hwang D.S. Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress // Stem Cells and Development. 2012. V. 21. № 11. P. 1877–1886. https://doi.org/10.1089/scd.2011.0284
  47. Krishnan J., Danzer C., Simka T. et al. Dietary obesity-associated Hif1alpha activation in adi-pocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system // Genes Dev. 2012. V. 26. P. 259–270. https://doi.org/10.1101/gad.180406.111
  48. Lee N., Kim D.K., Kim E.S. Comparative interactomes of SIRT6 and SIRT7: Implication of functional links to aging // Proteomics. 2014. V. 14. № 13–14. P. 1610–1622. https://doi.org/10.1002/pmic.201400001
  49. Le Blanc K., Rasmusson I., Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesen-chymal stem cells // The Lancet. 2004. V. 363. № 9419. P. 1439–1441. https://doi.org/10.1016/S0140-6736(04)16104-7
  50. Li Z., Liu C., Xie Z. et al. Epigenetic dysregu-lation in mesenchymal stem cell aging and spontaneous differentiation // PLoS One. 2011. V. 6. № 6. P. 20526. https://doi.org/10.1371/journal.pone.0020526
  51. Li Y., Hu M., Xie J., Li S., Dai L. Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: roles and therapeutic prospects // Stem Cell Res Ther. 2023. V. 14. P. 166. https://doi.org/10.1186/s13287-023-03393-6
  52. Li M., Yan J., Chen X. et al. Spontaneous up-regulation of SIRT1 during osteogenesis contributes to stem cells' resistance to oxidative stress // J Cell Biochem. 2018. V. 119. № 6. P. 4928–4944. https://doi.org/10.1002/jcb.26730
  53. Lin C., Li N., Cheng H., Yen M. Oxidative stress induces imbalance of adipogenic/osteoblasti-clineage commitment in mesenchymal stem cells throughdecreasing SIRT1 functions // J. Cell. Mol. Med. 2018. V. 22. № 2. P. 786–796. https://doi.org/10.1111/jcmm.13356
  54. Lin S., Wu B., Hu X., Lu H. Sirtuin 4 (Sirt4) downregulation contributes to chondrocyte senescence and osteoarthritis via mediating mitochondrial dysfunction // Int J Biol Sci. 2024. V. 20. № 4. P. 1256–1278. https://doi.org/10.7150/ijbs.85585
  55. Lin Z.F., Xu H.B., Wang J.Y. et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS // Biochem Biophys Res Commun. 2013. V. 441. P. 191–195. https://doi.org/10.1016/j.bbrc.2013.10.033
  56. Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase // J Biol Chem. 2005. V. 280. P. 21313–21320. https://doi.org/10.1074/jbc.M413296200
  57. Liu B., Che W., Zheng C. et al. SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes // Cell Physiol Biochem. 2013. V. 32. P. 1050–1059. https://doi.org/10.1159/000354505
  58. Luo Y.X., Tang X., An X.Z. et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity // Eur Heart J. 2017. V. 38. P. 1389–1398. https://doi.org/10.1093/eurheartj/ehw138
  59. Ma C., Sun Y., Pi C. et al. Attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2 // Front Cell Dev Biol. 2020. V. 16. № 8. P. 599376. https://doi.org/10.3389/fcell
  60. Ma C., Pi C., Yang Y. et al. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1 // PLoS One. 2017. V. 12. № 1. P. e0170930. https://doi.org/10.1371/journal.pone.0170930
  61. Merksamer P.I., Liu Y., He W. et al. The sirtuins, oxidative stress and aging: an emerging link // Aging (Albany NY). 2013. V. 5. № 144–150. https://doi.org/10.18632/aging.100544
  62. Mercken E.M., Mitchell S.J., Martin-Montalvo A. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass // Aging Cell. 2014. V. 13. P. 787–796. https://doi.org/10.1111/acel.12220
  63. Min Z., Gao J., Yu Y. The roles of mitochondrial SIRT4 in cellular metabolism // Front Endocrinol (Lausanne). 2019. V. 7. № 9. P. 783. https://doi.org/10.3389/fendo.2018.00783
  64. Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and NF-kappaB signaling // Cell Res. 2011. V. 21. P. 103–115. https://doi.org/10.1038/cr.2010.178
  65. Morigi M., Perico L., Benigni A. Sirtuins in renal health and disease // J Am Soc Nephrol. 2018. V. 29. P. 1799–1809. https://doi.org/10.1681/ASN.2017111218
  66. Nakamura Y., Ogura M., Tanaka D., Inagaki N. Localization of mouse mitochondrial SIRT proteins: Shift of SIRT3 to nucleus by co-expression with SIRT5 // Biochem Biophys Res Commun. 2008. V. 366. P. 174–179. https://doi.org/10.1016/j.bbrc.2007.11.122
  67. Nasrin N., Wu X., Fortier E. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells // J Biol Chem. 2010. V. 285. P. 31995–32002. https://doi.org/10.1074/jbc.M110.124164
  68. O'Callaghan C., Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer // Aging Cell. 2017. V. 16. № 6. P. 1208–1218. https://doi.org/10.1111/acel.12685
  69. Okada M., Kim H.W., Matsu-ura K. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase // Stem Cells. 2016. V. 34. № 1. P. 148–59. https://doi.org/10.1002/stem.2211
  70. Orlic D., Kajstura J., Chimenti S. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival // PNAS or PNAS USA. 2001. V. 98. № 18. P. 10344–10349.https://doi.org/10.1073/pnas.181177898
  71. Ou T., Yang W., Li W. et al. SIRT5 deficiency enhances the proliferative and therapeutic capacities of adipose-derived mesenchymal stem cells via metabolic switching // Clin Transl Med. 2020. V. 10. № 5. P. 172. https://doi.org/10.1002/ctm2.172
  72. Ou X., Ying J., Bai X., Wang C., Ruan D. Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration // Int J Mol Med. 2020. V. 46. P. 1074–1084. https://doi.org/10.3892/ijmm.2020.4668
  73. Pan H., Guan D., Liu X. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2 // Cell Res. 2016. V. 26. P. 190–205. https://doi.org/10.1038/cr.2016.4
  74. Pais T.F., Szego E.M., Marques O. et al. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation // EMBO J. 2013. V. 32. P. 2603–2616. https://doi.org/10.1038/emboj.2013.200
  75. Park J., Chen Y., Tishkoff D.X. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways // Mol. Cell. 2013. V. 50. P. 919–930. https://doi.org/10.1016/j.molcel.2013.06.001
  76. Peltz L., Gomez J., Marquez M. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development // PLoS One. 2012. V. 7. № 5. P. e37162. https://doi.org/10.1371/journal.pone.0037162
  77. Pollina E.A., Brunet A. Epigenetic regulation of aging stem cells // Oncogene. 2011. V. 30. № 28. P. 3105–26. https://doi.org/10.1038/onc.2011.45
  78. Qu P., Wang L., Min Y. et al. Vav1 regulates mesenchymal stem cell differentiation decision between adipocyte and chondrocyte via Sirt1 // Stem Cells. 2016. V. 34. № 7. P. 1934–46. https://doi.org/10.1002/stem.2365
  79. Qiu X., Brown K., Hirschey M.D., Verdin E., Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation // Cell Metab. 2010. V. 12. № 6. P. 662–667. https://doi.org/10.1016/j.cmet.2010.11.015
  80. Rardin M.J., He W., Nishida Y. et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks // Cell Metab. V. 18. P. 920–933. https://doi.org/10.1016/j.cmet.2013.11.013
  81. Ringden O., Uzunel M., Rasmusson I. et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease // Transplantation. 2006. V. 81. P. 10. P. 1390–1397. https://doi.org/10.1097/01.tp.0000214462.63943.14
  82. Shakibaei M., Shayan P., Busch F. et al. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation // PLoS One. 2012. V. 7. № 4. P. e35712. https://doi.org/10.1371/journal.pone.0035712
  83. Sies H. Oxidative stress: a concept in redox biology and medicine // Redox Biol. 2015. V. 4. P. 180–183. https://doi.org/10.1016/j.redox.2015.01.002
  84. Simic P., Zainabadi K., Bell E. et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin // EMBO Mol Med. 2013. V. 30. № 5(3). P. 430–440. https://doi.org/10.1002/emmm.201201606
  85. Song J., Li J., Yang F. et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow // Cell Death Dis. 2019. V. 10. № 5. P. 336. https://doi.org/10.1038/s41419-019-1569-2
  86. Sun H., Wu Y., Fu D., Huang C. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway // Stem Cells. 2014. V. 32. P. 1943–1955. https://doi.org/10.1002/stem.1671
  87. Tennen R.I., Chua K.F. Chromatin regulation and genome maintenance by mammalian SIRT6 // Trends Biochem Sci. 2011. V. 36. P. 39–46. https://doi.org/10.1016/j.tibs.2010.07.009
  88. Tseng P.C., Hou S.M., Chen R.J. et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis // J Bone Miner Res. 2011. V. 26. № 10. P. 2552–63. https://doi.org/10.1002/jbmr.460
  89. Van de Ven R.A., Santos D., Haigis M.C. Mitochondrial sirtuins and molecular mechanisms of aging // Trends Mol. Med. 2017. V. 23. P. 320–331. https://doi.org/10.1016/j.molmed.2017.02.005
  90. Van Meter M., Mao Z., Gorbunova V., Seluanov A. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair // Aging (Albany NY). V. 3. № 9. P. 829–835. https://doi.org/10.18632/aging.100389
  91. Vassilopoulos A., Fritz K.S., Petersen D.R., Gius D. The human sirtuin family: evolutionary divergences and functions // Hum Genomics. 2011. V. 5. № 5. P. 485–496. https://doi.org/10.1186/1479-7364-5-5-485
  92. Wang F., Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma // Mol Biol Cell. 2009. V. 20. № 3. P. 801–808. https://doi.org/10.1091/mbc.e08-06-0647
  93. Wang Y.P., Zhou L.S., Zhao Y.Z. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress // EMBO J. 2014. V. 33. P. 1304–1320. https://doi.org/10.1002/embj.201387224
  94. Wang H., Sun Y., Pi C. et al. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular senescence by NAD+/Sirt3 pathway in Mesenchymal Stem Cells // Int. J. Mol. Sci. 2022. V. 23. P. 14739. https://doi.org/10.3390/ijms232314739
  95. Wang Y., Yang J., Hong T., Chen X., Cui L. SIRT2: Controversy and multiple roles in disease and physiology // Ageing Res Rev. 2019. V. 55. P. 100961. https://doi.org/10.1016/j.arr.2019.100961
  96. Webster B.R., Lu Z., Sack M.N., Scott I. The role of sirtuins in modulating redox stressors // Free Radic Biol Med. 2012. V. 52. № 2. P. 281–290. https://doi.org/10.1016/j.freeradbiomed.2011.10.484
  97. Weng Z., Wang Y., Ouchi T. et al. Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies // Stem Cells Transl Med. 2022. V. 11. № 4. P. 356–371. https://doi.org/10.1093/stcltm/szac004
  98. Wyles C.C., Houdek M.T., Behfar A., Sierra R.J. Mesenchymal stem cell therapy for osteoarthritis: current perspectives // Stem Cells Cloning. 2015. V. 8. P. 117–124. https://doi.org/10.2147/SCCAA.S68073
  99. Yang S.R., Park J.R., Kang K.S. Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases // Oxidative Medicine and Cellular Longevity. 2015. P. 486263. https://doi.org/10.1155/2015/486263
  100. Ye F., Jiang J., Zong C. et al. Sirt1-overexpressing mesenchymal stem cells drive the anti-tumor effect through their pro-inflammatory capacity // Mol Ther. 2020. V. 28. № 3. P. 874–888. https://doi.org/10.1016/j.ymthe.2020.01.018
  101. Yoon D., Choi Y., Jang Y. et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells // Stem Cells. 2014. V. 32. № 12. P. 3219–3231. https://doi.org/10.1002/stem.1811
  102. Yu A., Yu R., Liu H., Ge C., Dang W. SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence // GeroScience. 2024. V. 46. P. 1107–1127. https://doi.org/10.1007/s11357-023-00863-w
  103. Yu S.S., Cai Y., Ye J.T. et al. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-kappaB-dependent transcriptional activity // Br J Pharmacol. 2013. V. 168. P. 117–128. https://doi.org/10.1111/j.1476-5381.2012.01903.x
  104. Yuan H.F., Zhai C., Yan X.L. et al. SIRT1 is required for long-term growth of human mesenchymal stem cells // J Mol Med (Berl). 2012. V. 90. № 4. P. 389–400. https://doi.org/10.1007/s00109-011-0825-4
  105. Zhang P., Liu Y., Wang Y. et al. SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling // Sci Rep. 2017. V. 7. № 1. P. 10229. https://doi.org/10.1038/s41598-017-10323-z
  106. Zhou Y., Song T., Peng J. et al. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro // Oncotarget. 2016. V. 7. № 47. P. 77707–77720. https://doi.org/10.18632/oncotarget.12774
  107. Zhu H., Chen H., Ding D. et al. The interaction of miR-181a-5p and sirtuin 1 regulated human bone marrow mesenchymal stem cells differentiation and apoptosis // Bioengineered. 2021. V. 12. № 1. P. 1426–1435. https://doi.org/10.1080/21655979.2021.1915672

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Клеточные эффекты сиртуинов в ММСК. Сплошными линиями обозначена положительная регуляция процессов, прерывистыми – отрицательная. Сокращения: ЦТК – цикл трикарбоновых кислот.

Скачать (492KB)

© Российская академия наук, 2025