Сиртуины и их роль в регуляции метаболизма мультипотентных мезенхимальных стромальных клеток
- Авторы: Лобанова М.В.1, Буравкова Л.Б.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН
- Выпуск: Том 56, № 2 (2025)
- Страницы: 86-100
- Раздел: Статьи
- URL: https://vietnamjournal.ru/0301-1798/article/view/685811
- DOI: https://doi.org/10.31857/S0301179825020062
- EDN: https://elibrary.ru/TJAMKP
- ID: 685811
Цитировать
Аннотация
Сиртуины – белки семейства гистоновых деацетилаз, вовлеченные в эпигенетическую регуляцию различных клеточных функций. В данном обзоре на основании имеющихся литературных данных проведен анализ функций сиртуинов в мультипотентных мезенхимальных стромальных клетках (ММСК). Данные белки играют весьма важную роль в энергетическом обмене, дифференцировке, старении ММСК. Показана их роль в защите от окислительного стресса. Описано участие сиртуинов в специфичной для ММСК регуляции генов.
Полный текст

Об авторах
М. В. Лобанова
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН
Автор, ответственный за переписку.
Email: pogodina_m@mail.ru
Россия, 123007, Москва
Л. Б. Буравкова
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации Институт медико-биологических проблем РАН
Email: buravkova@imbp.ru
Россия, 123007, Москва
Список литературы
- Андреева Е.Р., Матвеева Д.К., Жидкова О.В., Буравкова Л.Б. Внеклеточный матрикс как фактор регуляции физиологического микроокружения клетки // Успехи физиологических наук. 2024. Т. 55. № 1. C. 16–30. https://doi.org/10.31857/S0301179824010033
- Андреева Е.Р., Погодина М.В., Буравкова Л.Б. Гипоксический стресс как индуктор активации потенциала мультипотентных мезенхимальных стромальных клеток // Физиология человека. 2015. Т. 41. № 2. С. 123–129. https://doi.org/10.7868/S0131164615020022
- Лобанова М.В., Ратушный А.Ю., Буравкова Л.Б. Экспрессия генов, ассоциированных со старением, в мультипотентных мезенхимальных стромальных клетках при длительном культивировании в условиях разного содержания кислорода // Доклады академии наук. 2016. Т. 470. № 2. С. 227–229. https://doi.org/10.7868/S0869565216260236
- Пухальская А.Э., Дятлова А.С., Линькова Н.С., Кветной И.М. Сиртуины: роль в регуляции окислительного стресса и патогенезе нейродегенеративных заболеваний // Успехи физиологических наук. 2021. T. 52. № 1. C. 90–104. https://doi.org/10.31857/S0301179821010082
- Alves H., Munoz-Najar U., De Wit J. et al. A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells // J Cell Mol Med. 2010. V. 14. № 12. P. 2729–2738. https://doi.org/ 10.1111/j.1582-4934.2009.00931.x
- Bajek A., Czerwinski M., Olkowska J. et al. Does aging of mesenchymal stem cells limit their potential application in clinical practice? // Aging Clin. Exp. Res. 2012. V. 24. P. 404–411. https://doi.org/10.3275/8424
- Balestrieri M., Rizzo M., Barbieri M. et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. // Diabetes. 2015. V. 64. P. 1395–1406. https://doi.org/10.2337/db14-1149
- Bäckesjö C., Li Y., Haldosen L. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. // JBMR. 2006. V. 21. № 7. P. 993–1002. https://doi.org/10.1359/jbmr.060415
- Bernhardt A., Jamil A., Morshed M.T. et al. Oxidative stress and regulation of adipogenic differentiation capacity by sirtuins in adipose stem cells derived from female patients of advancing age // Sci Rep. 2024. № 14. P. 19885. https://doi.org/10.1038/s41598-024-70382-x
- Bi S., Liu Z., Wu Z. et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. // Protein Cell. 2020. V. 11. № 7. P. 483–504. https://doi.org/10.1007/s13238-020-00728-4
- Brunet A., Sweeney L., Sturgill J. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. // Science. 2004. V. 303. P. 2011–2015. https://doi.org/10.1126/science.1094637
- Buhrmann C., Busch F., Shayan P., Shakibaei M. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. // J Biol Chem. 2014. V. 289. № 32. P. 22048–62. https://doi.org/10.1074/jbc.M114.568790
- Carrico C., Meyer J.G., He W., Gibson B.W., Verdin E. The Mitochondrial Acylome Emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. // Cell Metab. 2018. V. 27. № 3. P. 497–512. https://doi.org/ 10.1016/j.cmet.2018.01.016
- Chang W., Lee C.Y., Park J.H. et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. // J Vet Sci. 2013. V. 14. № 1. P. 69–76. https://doi.org/10.4142/jvs.2013.14.1.69
- Chen C., Zhou M., Ge Y., Wang X. SIRT1 and aging related signaling pathways. // Mech Ageing Dev. 2020. V. 187. P. 111215. https://doi.org/10.1016/j.mad.2020.111215
- Chen E., Zhang W., Ye C. et al. Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the Wnt/β-catenin signaling pathway // Cell Death Dis. 2017. V. 8. № 9. P. e3042. https://doi.org/10.1038/cddis.2017.429
- Chen H., Liu X., Zhu W. et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin // Front Aging Neurosci. 2014. V. 3. № 6. P. 103. https://doi.org/10.3389/fnagi.2014.00103
- Chen Q., Hao W., Xiao C. et al. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion // Cell Rep. 2017. V. 18. P. 3155–3166. https://doi.org/10.1016/j.celrep.2017.03.006
- Chen X.H., Shi Z.G., Lin H.B. et al. Resveratrol alleviates osteoporosis through improving the osteogenic differentiation of bone marrow mesenchymal stem cells // Eur Rev Med Pharmacol Sci. 2019. V. 23. № 14. P. 6352–6359. https://doi.org/10.26355/eurrev_201907_18459
- Choo K.B., Tai L., Hymavathee K.S. et al. Oxidative stress-induced premature senescence in Wharton's jelly-derived mesenchymal stem cells // Int. J. Med. Sci. 2014. V. 11. № 11. P. 1201–1207. https://doi.org/10.7150/ijms.8356
- Dayem A.A., Choi H.-Y., Kim, J.-H., Cho S.-G. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells // Cancers. 2010. V. 2. P. 859–884. https://doi.org/10.3390/cancers2020859
- Denu A., Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity // Free Radic Biol Med. 2021. V. 167. P. 193–200. https://doi.org/10.1016/j.freeradbiomed.2021.02.042
- Denu R.A. SIRT3 Enhances Mesenchymal Stem Cell Longevity and Differentiation // Oxid Med Cell Longev. 2017. P. 5841716. https://doi.org/10.1155/2017/5841716
- Dhar S., Tangpong J., Chaiswing L., Oberley T., Clair D. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages // Cancer Res. 2011. V. 71. № 21. P. 6684–6695. https://doi.org/10.1158/0008-5472.CAN-11-1233
- Ding Y., Yang H., Wang Y. et al. Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1α-SOD2-mediated regulation of mitochondrial function // Int. J. Biol. Sci. 2017. V. 13. P. 254–264. https://doi.org/10.7150/ijbs.17053
- D'Onofrio N., Servillo L., Giovane A. Ergothi-oneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6 // Free Radic Biol Med. 2016. V. 96. P. 211–222. https://doi.org/10.1016/j.freeradbiomed.2016.04.013
- Du J., Zhou Y., Su X. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. // Science. 2011. V. 334. P. 806–809. https://doi.org/10.1126/science.1207861
- Ferber E., Peck B., Delpuech O. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression // Cell Death Differ. 2012. V. 19. № 6. P. 968–979. https://doi.org/10.1038/cdd.2011.179
- Finkel T., Deng C.-X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins // Nature. 2009. V. 460. № 7255. P. 587–591. https://doi.org/10.1038/nature08197
- Frye R. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins // Biochem Biophys Res Commun. 2000. V. 273. № 2. P. 793–798. https://doi.org/10.1006/bbrc.2000.3000
- Gomes P., Outeiro T., Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism // Trends Pharmacol Sci. 2015. V. 36. P. 756–768. https://doi.org/10.1016/j.tips.2015.08.001
- Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process // Biogerontology. 2017. V. 18. P. 447–476. https://doi.org/10.1007/s10522-017-9685-9.
- Haigis M.C., Mostoslavsky R., Haigis K.M. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells // Cell. 2006. V. 126. P. 941–954. https://doi.org/ 10.1016/j.cell.2006.06.057
- Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance // Annu Rev Pathol. 2010. V. 5. P. 253–295. https://doi.org/ 10.1146/annurev.pathol.4. 110807.092250
- Hirschey M.D. Old enzymes, new tricks: sirtuins are NAD+-dependent de-acylases // Cell Metab. 2011. V. 14. № 6. P. 718–719. https://doi.org/10.1016/j.cmet.2011.10.006
- Houtkooper R.H., Pirinen E., Auwerx J. Sirtuins as regulators of metabolism and healthspan // Nat Rev Mol Cell Biol. 2012. V. 13. № 4. P. 225–238. https://doi.org/ 10.1038/nrm3293
- Hsu Y.C., Wu Y.T., Yu T.H., Wei Y.H. Mito-chondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer // Semin. Cell Dev. Biol. 2016. V. 52. P. 119–131. https://doi.org/10.1016/j.semcdb.2016.02.011
- Iwahara T., Bonasio R., Narendra V., Reinberg D. SIRT3 functions in the nucleus in the control of stress-related gene expression // Mol Cell Biol. 2012. V. 32. № 24. P. 5022–34. https://doi.org/10.1128/MCB.00822-12
- Jacobs K.M., Pennington J.D., Bisht K.S. et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression // Int. J. Biol. Sci. 2008. V. 4. P. 291–299. https://doi.org/10.7150/ijbs.4.291.
- Jaiswal А., Xudong Z., Zhenyu J., Saretzki G. Mitochondrial sirtuins in stem cells and cancer // The FEBS Journal. 2021. V. 289. № 12. P. 3393–3415. https://doi.org/10.1111/febs.15879
- Jia B., Chen J., Wang Q. et al. SIRT6 Promotes Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells Through Antagonizing DNMT1 // Front Cell Dev Biol. 2021. V. 22. № 9. P. 648627. https://doi.org/10.3389/fcell.2021.648627
- Jing E., Gesta S., Kahn C.R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation // Cell Metab. 2007. V. 6. № 2. P. 105–114. https://doi.org/10.1016/j.cmet.2007.07.003
- Kaufmann T., Kukolj E., Brachner A. et al. SIRT2 regulates nuclear envelope reassembly through ANKLE2 deacetylation // J Cell Sci. 2016. V. 129. P. 4607–4621. https://doi.org/10.1242/jcs.192633
- Kim J.H., Park S.H., Park S.G. et al. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells // Stem Cells Dev. 2011. V. 20. № 10. P. 1753–61. https://doi.org/10.1089/scd.2010.0469
- Kiran S., Anwar T., Kiran M., Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin! // Cell Signal. 2015. V. 27. P. 673–682. https://doi.org/10.1016/j.cellsig.2014.11.026
- Ko E., Lee K.Y., Hwang D.S. Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress // Stem Cells and Development. 2012. V. 21. № 11. P. 1877–1886. https://doi.org/10.1089/scd.2011.0284
- Krishnan J., Danzer C., Simka T. et al. Dietary obesity-associated Hif1alpha activation in adi-pocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system // Genes Dev. 2012. V. 26. P. 259–270. https://doi.org/10.1101/gad.180406.111
- Lee N., Kim D.K., Kim E.S. Comparative interactomes of SIRT6 and SIRT7: Implication of functional links to aging // Proteomics. 2014. V. 14. № 13–14. P. 1610–1622. https://doi.org/10.1002/pmic.201400001
- Le Blanc K., Rasmusson I., Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesen-chymal stem cells // The Lancet. 2004. V. 363. № 9419. P. 1439–1441. https://doi.org/10.1016/S0140-6736(04)16104-7
- Li Z., Liu C., Xie Z. et al. Epigenetic dysregu-lation in mesenchymal stem cell aging and spontaneous differentiation // PLoS One. 2011. V. 6. № 6. P. 20526. https://doi.org/10.1371/journal.pone.0020526
- Li Y., Hu M., Xie J., Li S., Dai L. Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: roles and therapeutic prospects // Stem Cell Res Ther. 2023. V. 14. P. 166. https://doi.org/10.1186/s13287-023-03393-6
- Li M., Yan J., Chen X. et al. Spontaneous up-regulation of SIRT1 during osteogenesis contributes to stem cells' resistance to oxidative stress // J Cell Biochem. 2018. V. 119. № 6. P. 4928–4944. https://doi.org/10.1002/jcb.26730
- Lin C., Li N., Cheng H., Yen M. Oxidative stress induces imbalance of adipogenic/osteoblasti-clineage commitment in mesenchymal stem cells throughdecreasing SIRT1 functions // J. Cell. Mol. Med. 2018. V. 22. № 2. P. 786–796. https://doi.org/10.1111/jcmm.13356
- Lin S., Wu B., Hu X., Lu H. Sirtuin 4 (Sirt4) downregulation contributes to chondrocyte senescence and osteoarthritis via mediating mitochondrial dysfunction // Int J Biol Sci. 2024. V. 20. № 4. P. 1256–1278. https://doi.org/10.7150/ijbs.85585
- Lin Z.F., Xu H.B., Wang J.Y. et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS // Biochem Biophys Res Commun. 2013. V. 441. P. 191–195. https://doi.org/10.1016/j.bbrc.2013.10.033
- Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase // J Biol Chem. 2005. V. 280. P. 21313–21320. https://doi.org/10.1074/jbc.M413296200
- Liu B., Che W., Zheng C. et al. SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes // Cell Physiol Biochem. 2013. V. 32. P. 1050–1059. https://doi.org/10.1159/000354505
- Luo Y.X., Tang X., An X.Z. et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity // Eur Heart J. 2017. V. 38. P. 1389–1398. https://doi.org/10.1093/eurheartj/ehw138
- Ma C., Sun Y., Pi C. et al. Attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2 // Front Cell Dev Biol. 2020. V. 16. № 8. P. 599376. https://doi.org/10.3389/fcell
- Ma C., Pi C., Yang Y. et al. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1 // PLoS One. 2017. V. 12. № 1. P. e0170930. https://doi.org/10.1371/journal.pone.0170930
- Merksamer P.I., Liu Y., He W. et al. The sirtuins, oxidative stress and aging: an emerging link // Aging (Albany NY). 2013. V. 5. № 144–150. https://doi.org/10.18632/aging.100544
- Mercken E.M., Mitchell S.J., Martin-Montalvo A. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass // Aging Cell. 2014. V. 13. P. 787–796. https://doi.org/10.1111/acel.12220
- Min Z., Gao J., Yu Y. The roles of mitochondrial SIRT4 in cellular metabolism // Front Endocrinol (Lausanne). 2019. V. 7. № 9. P. 783. https://doi.org/10.3389/fendo.2018.00783
- Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and NF-kappaB signaling // Cell Res. 2011. V. 21. P. 103–115. https://doi.org/10.1038/cr.2010.178
- Morigi M., Perico L., Benigni A. Sirtuins in renal health and disease // J Am Soc Nephrol. 2018. V. 29. P. 1799–1809. https://doi.org/10.1681/ASN.2017111218
- Nakamura Y., Ogura M., Tanaka D., Inagaki N. Localization of mouse mitochondrial SIRT proteins: Shift of SIRT3 to nucleus by co-expression with SIRT5 // Biochem Biophys Res Commun. 2008. V. 366. P. 174–179. https://doi.org/10.1016/j.bbrc.2007.11.122
- Nasrin N., Wu X., Fortier E. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells // J Biol Chem. 2010. V. 285. P. 31995–32002. https://doi.org/10.1074/jbc.M110.124164
- O'Callaghan C., Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer // Aging Cell. 2017. V. 16. № 6. P. 1208–1218. https://doi.org/10.1111/acel.12685
- Okada M., Kim H.W., Matsu-ura K. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase // Stem Cells. 2016. V. 34. № 1. P. 148–59. https://doi.org/10.1002/stem.2211
- Orlic D., Kajstura J., Chimenti S. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival // PNAS or PNAS USA. 2001. V. 98. № 18. P. 10344–10349.https://doi.org/10.1073/pnas.181177898
- Ou T., Yang W., Li W. et al. SIRT5 deficiency enhances the proliferative and therapeutic capacities of adipose-derived mesenchymal stem cells via metabolic switching // Clin Transl Med. 2020. V. 10. № 5. P. 172. https://doi.org/10.1002/ctm2.172
- Ou X., Ying J., Bai X., Wang C., Ruan D. Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration // Int J Mol Med. 2020. V. 46. P. 1074–1084. https://doi.org/10.3892/ijmm.2020.4668
- Pan H., Guan D., Liu X. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2 // Cell Res. 2016. V. 26. P. 190–205. https://doi.org/10.1038/cr.2016.4
- Pais T.F., Szego E.M., Marques O. et al. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation // EMBO J. 2013. V. 32. P. 2603–2616. https://doi.org/10.1038/emboj.2013.200
- Park J., Chen Y., Tishkoff D.X. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways // Mol. Cell. 2013. V. 50. P. 919–930. https://doi.org/10.1016/j.molcel.2013.06.001
- Peltz L., Gomez J., Marquez M. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development // PLoS One. 2012. V. 7. № 5. P. e37162. https://doi.org/10.1371/journal.pone.0037162
- Pollina E.A., Brunet A. Epigenetic regulation of aging stem cells // Oncogene. 2011. V. 30. № 28. P. 3105–26. https://doi.org/10.1038/onc.2011.45
- Qu P., Wang L., Min Y. et al. Vav1 regulates mesenchymal stem cell differentiation decision between adipocyte and chondrocyte via Sirt1 // Stem Cells. 2016. V. 34. № 7. P. 1934–46. https://doi.org/10.1002/stem.2365
- Qiu X., Brown K., Hirschey M.D., Verdin E., Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation // Cell Metab. 2010. V. 12. № 6. P. 662–667. https://doi.org/10.1016/j.cmet.2010.11.015
- Rardin M.J., He W., Nishida Y. et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks // Cell Metab. V. 18. P. 920–933. https://doi.org/10.1016/j.cmet.2013.11.013
- Ringden O., Uzunel M., Rasmusson I. et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease // Transplantation. 2006. V. 81. P. 10. P. 1390–1397. https://doi.org/10.1097/01.tp.0000214462.63943.14
- Shakibaei M., Shayan P., Busch F. et al. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation // PLoS One. 2012. V. 7. № 4. P. e35712. https://doi.org/10.1371/journal.pone.0035712
- Sies H. Oxidative stress: a concept in redox biology and medicine // Redox Biol. 2015. V. 4. P. 180–183. https://doi.org/10.1016/j.redox.2015.01.002
- Simic P., Zainabadi K., Bell E. et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin // EMBO Mol Med. 2013. V. 30. № 5(3). P. 430–440. https://doi.org/10.1002/emmm.201201606
- Song J., Li J., Yang F. et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow // Cell Death Dis. 2019. V. 10. № 5. P. 336. https://doi.org/10.1038/s41419-019-1569-2
- Sun H., Wu Y., Fu D., Huang C. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway // Stem Cells. 2014. V. 32. P. 1943–1955. https://doi.org/10.1002/stem.1671
- Tennen R.I., Chua K.F. Chromatin regulation and genome maintenance by mammalian SIRT6 // Trends Biochem Sci. 2011. V. 36. P. 39–46. https://doi.org/10.1016/j.tibs.2010.07.009
- Tseng P.C., Hou S.M., Chen R.J. et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis // J Bone Miner Res. 2011. V. 26. № 10. P. 2552–63. https://doi.org/10.1002/jbmr.460
- Van de Ven R.A., Santos D., Haigis M.C. Mitochondrial sirtuins and molecular mechanisms of aging // Trends Mol. Med. 2017. V. 23. P. 320–331. https://doi.org/10.1016/j.molmed.2017.02.005
- Van Meter M., Mao Z., Gorbunova V., Seluanov A. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair // Aging (Albany NY). V. 3. № 9. P. 829–835. https://doi.org/10.18632/aging.100389
- Vassilopoulos A., Fritz K.S., Petersen D.R., Gius D. The human sirtuin family: evolutionary divergences and functions // Hum Genomics. 2011. V. 5. № 5. P. 485–496. https://doi.org/10.1186/1479-7364-5-5-485
- Wang F., Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma // Mol Biol Cell. 2009. V. 20. № 3. P. 801–808. https://doi.org/10.1091/mbc.e08-06-0647
- Wang Y.P., Zhou L.S., Zhao Y.Z. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress // EMBO J. 2014. V. 33. P. 1304–1320. https://doi.org/10.1002/embj.201387224
- Wang H., Sun Y., Pi C. et al. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular senescence by NAD+/Sirt3 pathway in Mesenchymal Stem Cells // Int. J. Mol. Sci. 2022. V. 23. P. 14739. https://doi.org/10.3390/ijms232314739
- Wang Y., Yang J., Hong T., Chen X., Cui L. SIRT2: Controversy and multiple roles in disease and physiology // Ageing Res Rev. 2019. V. 55. P. 100961. https://doi.org/10.1016/j.arr.2019.100961
- Webster B.R., Lu Z., Sack M.N., Scott I. The role of sirtuins in modulating redox stressors // Free Radic Biol Med. 2012. V. 52. № 2. P. 281–290. https://doi.org/10.1016/j.freeradbiomed.2011.10.484
- Weng Z., Wang Y., Ouchi T. et al. Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies // Stem Cells Transl Med. 2022. V. 11. № 4. P. 356–371. https://doi.org/10.1093/stcltm/szac004
- Wyles C.C., Houdek M.T., Behfar A., Sierra R.J. Mesenchymal stem cell therapy for osteoarthritis: current perspectives // Stem Cells Cloning. 2015. V. 8. P. 117–124. https://doi.org/10.2147/SCCAA.S68073
- Yang S.R., Park J.R., Kang K.S. Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases // Oxidative Medicine and Cellular Longevity. 2015. P. 486263. https://doi.org/10.1155/2015/486263
- Ye F., Jiang J., Zong C. et al. Sirt1-overexpressing mesenchymal stem cells drive the anti-tumor effect through their pro-inflammatory capacity // Mol Ther. 2020. V. 28. № 3. P. 874–888. https://doi.org/10.1016/j.ymthe.2020.01.018
- Yoon D., Choi Y., Jang Y. et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells // Stem Cells. 2014. V. 32. № 12. P. 3219–3231. https://doi.org/10.1002/stem.1811
- Yu A., Yu R., Liu H., Ge C., Dang W. SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence // GeroScience. 2024. V. 46. P. 1107–1127. https://doi.org/10.1007/s11357-023-00863-w
- Yu S.S., Cai Y., Ye J.T. et al. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-kappaB-dependent transcriptional activity // Br J Pharmacol. 2013. V. 168. P. 117–128. https://doi.org/10.1111/j.1476-5381.2012.01903.x
- Yuan H.F., Zhai C., Yan X.L. et al. SIRT1 is required for long-term growth of human mesenchymal stem cells // J Mol Med (Berl). 2012. V. 90. № 4. P. 389–400. https://doi.org/10.1007/s00109-011-0825-4
- Zhang P., Liu Y., Wang Y. et al. SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling // Sci Rep. 2017. V. 7. № 1. P. 10229. https://doi.org/10.1038/s41598-017-10323-z
- Zhou Y., Song T., Peng J. et al. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro // Oncotarget. 2016. V. 7. № 47. P. 77707–77720. https://doi.org/10.18632/oncotarget.12774
- Zhu H., Chen H., Ding D. et al. The interaction of miR-181a-5p and sirtuin 1 regulated human bone marrow mesenchymal stem cells differentiation and apoptosis // Bioengineered. 2021. V. 12. № 1. P. 1426–1435. https://doi.org/10.1080/21655979.2021.1915672
Дополнительные файлы
